語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Efficient Learning from 3D Molecular Structures Using Equivariant Neural Networks.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Efficient Learning from 3D Molecular Structures Using Equivariant Neural Networks./
作者:
Suriana, Patricia.
面頁冊數:
1 online resource (155 pages)
附註:
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
Contained By:
Dissertations Abstracts International85-12B.
標題:
Biology. -
電子資源:
click for full text (PQDT)
ISBN:
9798383013298
Efficient Learning from 3D Molecular Structures Using Equivariant Neural Networks.
Suriana, Patricia.
Efficient Learning from 3D Molecular Structures Using Equivariant Neural Networks.
- 1 online resource (155 pages)
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
Thesis (Ph.D.)--Stanford University, 2024.
Includes bibliographical references
Deep learning methods operating on three-dimensional (3D) molecular structures show promise in addressing vital challenges in biology and chemistry. The scarcity of experimentally determined structures, however, poses a significant hurdle in many machine learning applications. The incorporation of equivariance into deep learning models, leveraging inherent symmetries in structural biology problems, is essential for efficient learning from limited data. This dissertation delves into the utilization of rotationally and translationally equivariant neural networks in various structural biology problems. These include protein model quality assessment, the development of a machine learning--based scoring function for protein-ligand docking that considers protein flexibility, and the implementation of pocket-aware 3D fragment-based ligand optimization.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2024
Mode of access: World Wide Web
ISBN: 9798383013298Subjects--Topical Terms:
599573
Biology.
Index Terms--Genre/Form:
554714
Electronic books.
Efficient Learning from 3D Molecular Structures Using Equivariant Neural Networks.
LDR
:02131ntm a22003377 4500
001
1150151
005
20241022111600.5
006
m o d
007
cr bn ---uuuuu
008
250605s2024 xx obm 000 0 eng d
020
$a
9798383013298
035
$a
(MiAaPQ)AAI31102260
035
$a
(MiAaPQ)STANFORDdc577zq7333
035
$a
AAI31102260
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Suriana, Patricia.
$3
1476585
245
1 0
$a
Efficient Learning from 3D Molecular Structures Using Equivariant Neural Networks.
264
0
$c
2024
300
$a
1 online resource (155 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
500
$a
Advisor: Feng, Liang;Kundaje, Anshul;Maduke, Merritt;Dror, Ron.
502
$a
Thesis (Ph.D.)--Stanford University, 2024.
504
$a
Includes bibliographical references
520
$a
Deep learning methods operating on three-dimensional (3D) molecular structures show promise in addressing vital challenges in biology and chemistry. The scarcity of experimentally determined structures, however, poses a significant hurdle in many machine learning applications. The incorporation of equivariance into deep learning models, leveraging inherent symmetries in structural biology problems, is essential for efficient learning from limited data. This dissertation delves into the utilization of rotationally and translationally equivariant neural networks in various structural biology problems. These include protein model quality assessment, the development of a machine learning--based scoring function for protein-ligand docking that considers protein flexibility, and the implementation of pocket-aware 3D fragment-based ligand optimization.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2024
538
$a
Mode of access: World Wide Web
650
4
$a
Biology.
$3
599573
650
4
$a
Deep learning.
$3
1127428
650
4
$a
Neural networks.
$3
1011215
650
4
$a
Symmetry.
$3
569115
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0306
690
$a
0800
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Stanford University.
$3
1184533
773
0
$t
Dissertations Abstracts International
$g
85-12B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31102260
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入
第一次登入時,112年前入學、到職者,密碼請使用身分證號登入;112年後入學、到職者,密碼請使用身分證號"後六碼"登入,請注意帳號密碼有區分大小寫!
帳號(學號)
密碼
請在此電腦上記得個人資料
取消
忘記密碼? (請注意!您必須已在系統登記E-mail信箱方能使用。)