語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Scalable and Efficient Material Point Methods on Modern Computational Platforms.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Scalable and Efficient Material Point Methods on Modern Computational Platforms./
作者:
Qiu, Yuxing.
面頁冊數:
1 online resource (239 pages)
附註:
Source: Dissertations Abstracts International, Volume: 85-09, Section: B.
Contained By:
Dissertations Abstracts International85-09B.
標題:
Computer science. -
電子資源:
click for full text (PQDT)
ISBN:
9798381873108
Scalable and Efficient Material Point Methods on Modern Computational Platforms.
Qiu, Yuxing.
Scalable and Efficient Material Point Methods on Modern Computational Platforms.
- 1 online resource (239 pages)
Source: Dissertations Abstracts International, Volume: 85-09, Section: B.
Thesis (Ph.D.)--University of California, Los Angeles, 2024.
Includes bibliographical references
The challenge of efficiently and plausibly simulating deformable solids and fluids remains significant in the domains of Computer Graphics and Scientific Computing. This dissertation presents an in-depth exploration of physics-based simulation, with an emphasis on the Material Point Method (MPM) - a dominant technique in this arena. Our research aims to extend the capabilities of MPM, focusing on enhancing its performance, scalability, range of applications, and integration with emerging AI technologies. We first summarize our development of optimized MPM leveraging GPU architectures. This advancement accelerates scenarios involving hundreds of millions of particles in multi-GPU computational environments. Furthermore, the thesis introduces a device-agnostic and distributed MPM framework. This system is adept at dynamically allocating workloads across multiple computing ranks, thus enabling simulations at unprecedented particle-count scales. Additionally, the dissertation examines the application of physics-based simulation, specifically MPM, in real-time contexts. It also integrates simulation with generative AI tasks. This exploration includes developing unified frameworks for simulations, image rendering, and natural language processing, showcasing the versatile applicability of MPM in tackling contemporary computational challenges.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2024
Mode of access: World Wide Web
ISBN: 9798381873108Subjects--Topical Terms:
573171
Computer science.
Subjects--Index Terms:
Generative AIIndex Terms--Genre/Form:
554714
Electronic books.
Scalable and Efficient Material Point Methods on Modern Computational Platforms.
LDR
:02772ntm a22003977 4500
001
1146259
005
20240812064354.5
006
m o d
007
cr bn ---uuuuu
008
250605s2024 xx obm 000 0 eng d
020
$a
9798381873108
035
$a
(MiAaPQ)AAI30993796
035
$a
AAI30993796
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Qiu, Yuxing.
$3
1471618
245
1 0
$a
Scalable and Efficient Material Point Methods on Modern Computational Platforms.
264
0
$c
2024
300
$a
1 online resource (239 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 85-09, Section: B.
500
$a
Advisor: Terzopoulos, Demetri.
502
$a
Thesis (Ph.D.)--University of California, Los Angeles, 2024.
504
$a
Includes bibliographical references
520
$a
The challenge of efficiently and plausibly simulating deformable solids and fluids remains significant in the domains of Computer Graphics and Scientific Computing. This dissertation presents an in-depth exploration of physics-based simulation, with an emphasis on the Material Point Method (MPM) - a dominant technique in this arena. Our research aims to extend the capabilities of MPM, focusing on enhancing its performance, scalability, range of applications, and integration with emerging AI technologies. We first summarize our development of optimized MPM leveraging GPU architectures. This advancement accelerates scenarios involving hundreds of millions of particles in multi-GPU computational environments. Furthermore, the thesis introduces a device-agnostic and distributed MPM framework. This system is adept at dynamically allocating workloads across multiple computing ranks, thus enabling simulations at unprecedented particle-count scales. Additionally, the dissertation examines the application of physics-based simulation, specifically MPM, in real-time contexts. It also integrates simulation with generative AI tasks. This exploration includes developing unified frameworks for simulations, image rendering, and natural language processing, showcasing the versatile applicability of MPM in tackling contemporary computational challenges.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2024
538
$a
Mode of access: World Wide Web
650
4
$a
Computer science.
$3
573171
650
4
$a
Engineering.
$3
561152
653
$a
Generative AI
653
$a
Material Point Method
653
$a
Physics-based simulation
653
$a
Real-time application
653
$a
GPU architectures
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0984
690
$a
0800
690
$a
0537
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
University of California, Los Angeles.
$b
Computer Science 0201.
$3
1182286
773
0
$t
Dissertations Abstracts International
$g
85-09B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30993796
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入
第一次登入時,112年前入學、到職者,密碼請使用身分證號登入;112年後入學、到職者,密碼請使用身分證號"後六碼"登入,請注意帳號密碼有區分大小寫!
帳號(學號)
密碼
請在此電腦上記得個人資料
取消
忘記密碼? (請注意!您必須已在系統登記E-mail信箱方能使用。)