Language:
English
繁體中文
Help
Login
Back
to Search results for
[ subject:"Forms, Modular." ]
Switch To:
Labeled
|
MARC Mode
|
ISBD
Stable Klingen vectors and paramodular newforms
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Stable Klingen vectors and paramodular newforms/ by Jennifer Johnson-Leung, Brooks Roberts, Ralf Schmidt.
Author:
Johnson-Leung, Jennifer.
other author:
Roberts, Brooks.
Published:
Cham :Springer Nature Switzerland : : 2023.,
Description:
xvii, 362 p. :ill., digital ; : 24 cm.;
Contained By:
Springer Nature eBook
Subject:
Forms, Modular. -
Online resource:
https://doi.org/10.1007/978-3-031-45177-5
ISBN:
9783031451775
Stable Klingen vectors and paramodular newforms
Johnson-Leung, Jennifer.
Stable Klingen vectors and paramodular newforms
[electronic resource] /by Jennifer Johnson-Leung, Brooks Roberts, Ralf Schmidt. - Cham :Springer Nature Switzerland :2023. - xvii, 362 p. :ill., digital ;24 cm. - Lecture notes in mathematics,v. 23421617-9692 ;. - Lecture notes in mathematics ;1943..
This book describes a novel approach to the study of Siegel modular forms of degree two with paramodular level. It introduces the family of stable Klingen congruence subgroups of GSp(4) and uses this family to obtain new relations between the Hecke eigenvalues and Fourier coefficients of paramodular newforms, revealing a fundamental dichotomy for paramodular representations. Among other important results, it includes a complete description of the vectors fixed by these congruence subgroups in all irreducible representations of GSp(4) over a nonarchimedean local field. Siegel paramodular forms have connections with the theory of automorphic representations and the Langlands program, Galois representations, the arithmetic of abelian surfaces, and algorithmic number theory. Providing a useful standard source on the subject, the book will be of interest to graduate students and researchers working in the above fields.
ISBN: 9783031451775
Standard No.: 10.1007/978-3-031-45177-5doiSubjects--Topical Terms:
580384
Forms, Modular.
LC Class. No.: QA243
Dewey Class. No.: 512.73
Stable Klingen vectors and paramodular newforms
LDR
:01977nam a2200325 a 4500
001
1120474
003
DE-He213
005
20231227022813.0
006
m d
007
cr nn 008maaau
008
240612s2023 sz s 0 eng d
020
$a
9783031451775
$q
(electronic bk.)
020
$a
9783031451768
$q
(paper)
024
7
$a
10.1007/978-3-031-45177-5
$2
doi
035
$a
978-3-031-45177-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA243
072
7
$a
PBH
$2
bicssc
072
7
$a
MAT022000
$2
bisacsh
072
7
$a
PBH
$2
thema
082
0 4
$a
512.73
$2
23
090
$a
QA243
$b
.J67 2023
100
1
$a
Johnson-Leung, Jennifer.
$e
editor.
$3
1285482
245
1 0
$a
Stable Klingen vectors and paramodular newforms
$h
[electronic resource] /
$c
by Jennifer Johnson-Leung, Brooks Roberts, Ralf Schmidt.
260
$a
Cham :
$c
2023.
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
300
$a
xvii, 362 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
1617-9692 ;
$v
v. 2342
520
$a
This book describes a novel approach to the study of Siegel modular forms of degree two with paramodular level. It introduces the family of stable Klingen congruence subgroups of GSp(4) and uses this family to obtain new relations between the Hecke eigenvalues and Fourier coefficients of paramodular newforms, revealing a fundamental dichotomy for paramodular representations. Among other important results, it includes a complete description of the vectors fixed by these congruence subgroups in all irreducible representations of GSp(4) over a nonarchimedean local field. Siegel paramodular forms have connections with the theory of automorphic representations and the Langlands program, Galois representations, the arithmetic of abelian surfaces, and algorithmic number theory. Providing a useful standard source on the subject, the book will be of interest to graduate students and researchers working in the above fields.
650
0
$a
Forms, Modular.
$3
580384
650
0
$a
Eigenvalues.
$3
527710
650
0
$a
Fourier analysis.
$3
639284
650
1 4
$a
Number Theory.
$3
672023
650
2 4
$a
Topological Groups and Lie Groups.
$3
1365737
650
2 4
$a
Global Analysis and Analysis on Manifolds.
$3
672519
700
1
$a
Roberts, Brooks.
$3
1435778
700
1
$a
Schmidt, Ralf.
$3
1435779
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in mathematics ;
$v
1943.
$3
882220
856
4 0
$u
https://doi.org/10.1007/978-3-031-45177-5
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login