Language:
English
繁體中文
Help
Login
Back
to Search results for
[ subject:"Autonomous Driving." ]
Switch To:
Labeled
|
MARC Mode
|
ISBD
基於循環特徵位移之關鍵點實例網路於車道偵測 = = PINET-RES:...
~
江鑑勳
基於循環特徵位移之關鍵點實例網路於車道偵測 = = PINET-RES:Point Instance Networks Based on Recurrent Feature-Shift for Lane Detection /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
基於循環特徵位移之關鍵點實例網路於車道偵測 =/ 江鑑勳.
Reminder of title:
PINET-RES:Point Instance Networks Based on Recurrent Feature-Shift for Lane Detection /
remainder title:
PINET-RES:Point Instance Networks Based on Recurrent Feature-Shift for Lane Detection.
Author:
江鑑勳
Published:
雲林縣 :國立虎尾科技大學 , : 民113.07.,
Description:
[8], 44面 :圖, 表 ; : 30公分.;
Notes:
指導教授: 陳政宏.
Subject:
自動駕駛. -
Online resource:
電子資源
基於循環特徵位移之關鍵點實例網路於車道偵測 = = PINET-RES:Point Instance Networks Based on Recurrent Feature-Shift for Lane Detection /
江鑑勳
基於循環特徵位移之關鍵點實例網路於車道偵測 =
PINET-RES:Point Instance Networks Based on Recurrent Feature-Shift for Lane Detection /PINET-RES:Point Instance Networks Based on Recurrent Feature-Shift for Lane Detection.江鑑勳. - 初版. - 雲林縣 :國立虎尾科技大學 ,民113.07. - [8], 44面 :圖, 表 ;30公分.
指導教授: 陳政宏.
碩士論文--國立虎尾科技大學電機工程系碩士班.
含參考書目.
當今的許多車道線檢測方法雖有顯著的性能,但缺乏即時偵測的能力。即時偵測的能力對於自動駕駛車十分重要,但面對車載硬體的限制,如何達到即時偵測仍是十分艱鉅的挑戰。 在本文中提出了,基於循環特徵位移之關鍵點實例網路,一種新穎且有效的車道偵測方法。提取出車道中的關鍵點並進行實例分割。藉由減少網路的沙漏塊,提高運算速度。並利用知識蒸餾與循環特徵位移器減少了因縮短網路造成的準確度損失。在目前兩個較為廣泛使用的車道線資料庫TuSimple 與 CULane 上進行的大量的實驗。由實驗結果可知,循環特徵位移之關鍵點實例網路在速度與準確度 上具有良好的效果)在CULane 資料庫實現了高F1-measure(68.52)。速度方面,在在CULane 資料庫可達54FPS,基於NVIDIA GeForce RTX 3090。.
(平裝)Subjects--Topical Terms:
1062046
自動駕駛.
基於循環特徵位移之關鍵點實例網路於車道偵測 = = PINET-RES:Point Instance Networks Based on Recurrent Feature-Shift for Lane Detection /
LDR
:03056cam a2200241 i 4500
001
1129844
008
241015s2024 ch ak erm 000 0 chi d
035
$a
(THES)112NYPI0441030
040
$a
NFU
$b
chi
$c
NFU
$e
CCR
041
0 #
$a
chi
$b
chi
$b
eng
084
$a
008.165M
$b
3182 113
$2
ncsclt
100
1
$a
江鑑勳
$3
1448891
245
1 0
$a
基於循環特徵位移之關鍵點實例網路於車道偵測 =
$b
PINET-RES:Point Instance Networks Based on Recurrent Feature-Shift for Lane Detection /
$c
江鑑勳.
246
1 1
$a
PINET-RES:Point Instance Networks Based on Recurrent Feature-Shift for Lane Detection.
250
$a
初版.
260
#
$a
雲林縣 :
$b
國立虎尾科技大學 ,
$c
民113.07.
300
$a
[8], 44面 :
$b
圖, 表 ;
$c
30公分.
500
$a
指導教授: 陳政宏.
500
$a
學年度: 112.
502
$a
碩士論文--國立虎尾科技大學電機工程系碩士班.
504
$a
含參考書目.
520
3
$a
當今的許多車道線檢測方法雖有顯著的性能,但缺乏即時偵測的能力。即時偵測的能力對於自動駕駛車十分重要,但面對車載硬體的限制,如何達到即時偵測仍是十分艱鉅的挑戰。 在本文中提出了,基於循環特徵位移之關鍵點實例網路,一種新穎且有效的車道偵測方法。提取出車道中的關鍵點並進行實例分割。藉由減少網路的沙漏塊,提高運算速度。並利用知識蒸餾與循環特徵位移器減少了因縮短網路造成的準確度損失。在目前兩個較為廣泛使用的車道線資料庫TuSimple 與 CULane 上進行的大量的實驗。由實驗結果可知,循環特徵位移之關鍵點實例網路在速度與準確度 上具有良好的效果)在CULane 資料庫實現了高F1-measure(68.52)。速度方面,在在CULane 資料庫可達54FPS,基於NVIDIA GeForce RTX 3090。.
520
3
$a
Although many of today's lane line detection methods have significant performance, they lack the ability to detect in real time. The ability of real-time detection is very important for autonomous vehicles, but in the face of the limitations of on-board hardware, how to achieve real-time detection is still a very difficult challenge. In this master's thesis a novel and effective lane detection method, PINET-RES: Point Instance Networks Based on Recurrent Feature-Shift is proposed. Extract key points in the lane and perform instance segmentation on the key points. Improve computing speed by reducing hourglass blocks in the network. Then knowledge distillation and recurrent feature shifter are used to reduce the accuracy loss caused by shortening the network. A large number of experiments was conducted on CULane, a currently widely used lane line databases. It can be seen from the experimental results that the Point Instance Networks Based on Recurrent Feature-Shift for Lane Detection has good results in speed and accuracy. It achieves high F1-measure (68.52) in the CULane database. In terms of speed, it can reach 54FPS on the CULane database, based on NVIDIA GeForce RTX 3090..
563
$a
(平裝)
650
# 4
$a
自動駕駛.
$3
1062046
650
# 4
$a
卷積神經網路.
$3
1127424
650
# 4
$a
關鍵點估計.
$3
1451789
650
# 4
$a
深度學習.
$3
1127425
650
# 4
$a
車道線偵測.
$3
1384280
650
# 4
$a
Autonomous Driving.
$3
1451790
650
# 4
$a
Convolutional Neural Network.
$3
1127421
650
# 4
$a
Keypoint Estimate.
$3
1451791
650
# 4
$a
Deep Learning.
$3
1127423
650
# 4
$a
Lane Detection.
$3
1384283
856
7 #
$u
https://handle.ncl.edu.tw/11296/a8yumy
$z
電子資源
$2
http
based on 0 review(s)
ALL
圖書館B1F 博碩士論文專區
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
T013304
圖書館B1F 博碩士論文專區
不流通(NON_CIR)
碩士論文(TM)
TM 008.165M 3182 113
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login