Language:
English
繁體中文
Help
Login
Back
to Search results for
[ subject:"Text mining." ]
Switch To:
Labeled
|
MARC Mode
|
ISBD
Fundamentals of predictive text mining
~
Zhang, Tong.
Fundamentals of predictive text mining
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Fundamentals of predictive text mining/ by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang.
Author:
Weiss, Sholom M.
other author:
Zhang, Tong.
Published:
London :Imprint: Springer, : 2015.,
Description:
xiii, 239 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
Subject:
Database Management. -
Online resource:
http://dx.doi.org/10.1007/978-1-4471-6750-1
ISBN:
9781447167501
Fundamentals of predictive text mining
Weiss, Sholom M.
Fundamentals of predictive text mining
[electronic resource] /by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang. - 2nd ed. - London :Imprint: Springer,2015. - xiii, 239 p. :ill., digital ;24 cm. - Texts in computer science,1868-0941. - Texts in computer science..
Overview of Text Mining -- From Textual Information to Numerical Vectors -- Using Text for Prediction -- Information Retrieval and Text Mining -- Finding Structure in a Document Collection -- Looking for Information in Documents -- Data Sources for Prediction: Databases, Hybrid Data and the Web -- Case Studies -- Emerging Directions.
This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies. This highly anticipated second edition has been thoroughly revised and expanded with new material on deep learning, graph models, mining social media, and errors and pitfalls in big data evaluation, Twitter sentiment analysis, and dependency parsing discussion. The fully updated content also features in-depth discussions on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Topics and features: Presents a comprehensive, practical and easy-to-read introduction to text mining Includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter Explores the application and utility of each method, as well as the optimum techniques for specific scenarios Provides several descriptive case studies that take readers from problem description to systems deployment in the real world Describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English) Contains links to free downloadable industrial-quality text-mining software and other supplementary instruction material Fundamentals of Predictive Text Mining is an essential resource for IT professionals and managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students.
ISBN: 9781447167501
Standard No.: 10.1007/978-1-4471-6750-1doiSubjects--Topical Terms:
669820
Database Management.
LC Class. No.: QA76.9.D343
Dewey Class. No.: 006.312
Fundamentals of predictive text mining
LDR
:03158nam a2200349 a 4500
001
838139
003
DE-He213
005
20160421113459.0
006
m d
007
cr nn 008maaau
008
160616s2015 enk s 0 eng d
020
$a
9781447167501
$q
(electronic bk.)
020
$a
9781447167495
$q
(paper)
024
7
$a
10.1007/978-1-4471-6750-1
$2
doi
035
$a
978-1-4471-6750-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
072
7
$a
UNF
$2
bicssc
072
7
$a
UYQE
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
W429 2015
100
1
$a
Weiss, Sholom M.
$3
792410
245
1 0
$a
Fundamentals of predictive text mining
$h
[electronic resource] /
$c
by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang.
250
$a
2nd ed.
260
$a
London :
$c
2015.
$b
Imprint: Springer,
$b
Springer London :
300
$a
xiii, 239 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Texts in computer science,
$x
1868-0941
505
0
$a
Overview of Text Mining -- From Textual Information to Numerical Vectors -- Using Text for Prediction -- Information Retrieval and Text Mining -- Finding Structure in a Document Collection -- Looking for Information in Documents -- Data Sources for Prediction: Databases, Hybrid Data and the Web -- Case Studies -- Emerging Directions.
520
$a
This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies. This highly anticipated second edition has been thoroughly revised and expanded with new material on deep learning, graph models, mining social media, and errors and pitfalls in big data evaluation, Twitter sentiment analysis, and dependency parsing discussion. The fully updated content also features in-depth discussions on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Topics and features: Presents a comprehensive, practical and easy-to-read introduction to text mining Includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter Explores the application and utility of each method, as well as the optimum techniques for specific scenarios Provides several descriptive case studies that take readers from problem description to systems deployment in the real world Describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English) Contains links to free downloadable industrial-quality text-mining software and other supplementary instruction material Fundamentals of Predictive Text Mining is an essential resource for IT professionals and managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students.
650
2 4
$a
Database Management.
$3
669820
650
2 4
$a
Information Storage and Retrieval.
$3
593926
650
2 4
$a
Computer Appl. in Administrative Data Processing.
$3
669633
650
2 4
$a
Document Preparation and Text Processing.
$3
593925
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
1 4
$a
Computer Science.
$3
593922
650
0
$a
Predictive control.
$3
557049
650
0
$a
Data mining.
$3
528622
700
1
$a
Zhang, Tong.
$3
1069124
700
1
$a
Indurkhya, Nitin.
$3
839646
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Texts in computer science.
$3
889783
856
4 0
$u
http://dx.doi.org/10.1007/978-1-4471-6750-1
950
$a
Computer Science (Springer-11645)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login