Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Equivariant Poincaré Duality on G-Ma...
~
Arabia, Alberto.
Equivariant Poincaré Duality on G-Manifolds = Equivariant Gysin Morphism and Equivariant Euler Classes /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Equivariant Poincaré Duality on G-Manifolds/ by Alberto Arabia.
Reminder of title:
Equivariant Gysin Morphism and Equivariant Euler Classes /
Author:
Arabia, Alberto.
Description:
XV, 376 p. 272 illus., 2 illus. in color.online resource. :
Contained By:
Springer Nature eBook
Subject:
Algebraic topology. -
Online resource:
https://doi.org/10.1007/978-3-030-70440-7
ISBN:
9783030704407
Equivariant Poincaré Duality on G-Manifolds = Equivariant Gysin Morphism and Equivariant Euler Classes /
Arabia, Alberto.
Equivariant Poincaré Duality on G-Manifolds
Equivariant Gysin Morphism and Equivariant Euler Classes /[electronic resource] :by Alberto Arabia. - 1st ed. 2021. - XV, 376 p. 272 illus., 2 illus. in color.online resource. - Lecture Notes in Mathematics,22881617-9692 ;. - Lecture Notes in Mathematics,2144.
This book carefully presents a unified treatment of equivariant Poincaré duality in a wide variety of contexts, illuminating an area of mathematics that is often glossed over elsewhere. The approach used here allows the parallel treatment of both equivariant and nonequivariant cases. It also makes it possible to replace the usual field of coefficients for cohomology, the field of real numbers, with any field of arbitrary characteristic, and hence change (equivariant) de Rham cohomology to the usual singular (equivariant) cohomology . The book will be of interest to graduate students and researchers wanting to learn about the equivariant extension of tools familiar from non-equivariant differential geometry.
ISBN: 9783030704407
Standard No.: 10.1007/978-3-030-70440-7doiSubjects--Topical Terms:
678206
Algebraic topology.
LC Class. No.: QA612-612.8
Dewey Class. No.: 514.2
Equivariant Poincaré Duality on G-Manifolds = Equivariant Gysin Morphism and Equivariant Euler Classes /
LDR
:02158nam a22003975i 4500
001
1055444
003
DE-He213
005
20210904091429.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030704407
$9
978-3-030-70440-7
024
7
$a
10.1007/978-3-030-70440-7
$2
doi
035
$a
978-3-030-70440-7
050
4
$a
QA612-612.8
072
7
$a
PBPD
$2
bicssc
072
7
$a
MAT038000
$2
bisacsh
072
7
$a
PBPD
$2
thema
082
0 4
$a
514.2
$2
23
100
1
$a
Arabia, Alberto.
$e
author.
$0
(orcid)0000-0002-7795-0640
$1
https://orcid.org/0000-0002-7795-0640
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1360632
245
1 0
$a
Equivariant Poincaré Duality on G-Manifolds
$h
[electronic resource] :
$b
Equivariant Gysin Morphism and Equivariant Euler Classes /
$c
by Alberto Arabia.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XV, 376 p. 272 illus., 2 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes in Mathematics,
$x
1617-9692 ;
$v
2288
520
$a
This book carefully presents a unified treatment of equivariant Poincaré duality in a wide variety of contexts, illuminating an area of mathematics that is often glossed over elsewhere. The approach used here allows the parallel treatment of both equivariant and nonequivariant cases. It also makes it possible to replace the usual field of coefficients for cohomology, the field of real numbers, with any field of arbitrary characteristic, and hence change (equivariant) de Rham cohomology to the usual singular (equivariant) cohomology . The book will be of interest to graduate students and researchers wanting to learn about the equivariant extension of tools familiar from non-equivariant differential geometry.
650
0
$a
Algebraic topology.
$3
678206
650
0
$a
Topology.
$3
633483
650
0
$a
Category theory (Mathematics).
$3
1255325
650
0
$a
Homological algebra.
$3
1255326
650
0
$a
Group theory.
$3
527791
650
0
$a
Algebra.
$2
gtt
$3
579870
650
0
$a
Field theory (Physics).
$3
685987
650
1 4
$a
Algebraic Topology.
$3
672209
650
2 4
$a
Category Theory, Homological Algebra.
$3
678397
650
2 4
$a
Group Theory and Generalizations.
$3
672112
650
2 4
$a
Field Theory and Polynomials.
$3
672025
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030704391
776
0 8
$i
Printed edition:
$z
9783030704414
830
0
$a
Lecture Notes in Mathematics,
$x
0075-8434 ;
$v
2144
$3
1254300
856
4 0
$u
https://doi.org/10.1007/978-3-030-70440-7
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
912
$a
ZDB-2-LNM
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login