Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Comparison Finsler Geometry
~
SpringerLink (Online service)
Comparison Finsler Geometry
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Comparison Finsler Geometry/ by Shin-ichi Ohta.
Author:
Ohta, Shin-ichi.
Description:
XXII, 316 p. 8 illus.online resource. :
Contained By:
Springer Nature eBook
Subject:
Differential geometry. -
Online resource:
https://doi.org/10.1007/978-3-030-80650-7
ISBN:
9783030806507
Comparison Finsler Geometry
Ohta, Shin-ichi.
Comparison Finsler Geometry
[electronic resource] /by Shin-ichi Ohta. - 1st ed. 2021. - XXII, 316 p. 8 illus.online resource. - Springer Monographs in Mathematics,2196-9922. - Springer Monographs in Mathematics,.
I Foundations of Finsler Geometry -- 1. Warm-up: Norms and inner products -- 2. Finsler manifolds -- 3. Properties of geodesics -- 4. Covariant derivatives -- 5. Curvature -- 6. Examples of Finsler manifolds -- 7. Variation formulas for arclength -- 8. Some comparison theorems -- II Geometry and analysis of weighted Ricci curvature -- 9. Weighted Ricci curvature -- 10. Examples of measured Finsler manifolds -- 11. The nonlinear Laplacian -- 12. The Bochner-Weitzenbock formula -- 13. Nonlinear heat flow -- 14. Gradient estimates -- 15. Bakry-Ledoux isoperimetric inequality -- 16. Functional inequalities -- III Further topics -- 17. Splitting theorems -- 18. Curvature-dimension condition -- 19. Needle decompositions.
This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner–Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry–Ledoux’s Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger–Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement. Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.
ISBN: 9783030806507
Standard No.: 10.1007/978-3-030-80650-7doiSubjects--Topical Terms:
882213
Differential geometry.
LC Class. No.: QA641-670
Dewey Class. No.: 516.36
Comparison Finsler Geometry
LDR
:03827nam a22004095i 4500
001
1055936
003
DE-He213
005
20211009190203.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030806507
$9
978-3-030-80650-7
024
7
$a
10.1007/978-3-030-80650-7
$2
doi
035
$a
978-3-030-80650-7
050
4
$a
QA641-670
072
7
$a
PBMP
$2
bicssc
072
7
$a
MAT012030
$2
bisacsh
072
7
$a
PBMP
$2
thema
082
0 4
$a
516.36
$2
23
100
1
$a
Ohta, Shin-ichi.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1361234
245
1 0
$a
Comparison Finsler Geometry
$h
[electronic resource] /
$c
by Shin-ichi Ohta.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XXII, 316 p. 8 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Monographs in Mathematics,
$x
2196-9922
505
0
$a
I Foundations of Finsler Geometry -- 1. Warm-up: Norms and inner products -- 2. Finsler manifolds -- 3. Properties of geodesics -- 4. Covariant derivatives -- 5. Curvature -- 6. Examples of Finsler manifolds -- 7. Variation formulas for arclength -- 8. Some comparison theorems -- II Geometry and analysis of weighted Ricci curvature -- 9. Weighted Ricci curvature -- 10. Examples of measured Finsler manifolds -- 11. The nonlinear Laplacian -- 12. The Bochner-Weitzenbock formula -- 13. Nonlinear heat flow -- 14. Gradient estimates -- 15. Bakry-Ledoux isoperimetric inequality -- 16. Functional inequalities -- III Further topics -- 17. Splitting theorems -- 18. Curvature-dimension condition -- 19. Needle decompositions.
520
$a
This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner–Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry–Ledoux’s Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger–Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement. Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.
650
0
$a
Differential geometry.
$3
882213
650
0
$a
Global analysis (Mathematics).
$3
1255807
650
0
$a
Manifolds (Mathematics).
$3
1051266
650
1 4
$a
Differential Geometry.
$3
671118
650
2 4
$a
Global Analysis and Analysis on Manifolds.
$3
672519
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030806491
776
0 8
$i
Printed edition:
$z
9783030806514
776
0 8
$i
Printed edition:
$z
9783030806521
830
0
$a
Springer Monographs in Mathematics,
$x
1439-7382
$3
1254272
856
4 0
$u
https://doi.org/10.1007/978-3-030-80650-7
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login