Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Predicting the lineage choice of hem...
~
Kroiss, Manuel.
Predicting the lineage choice of hematopoietic stem cells = a novel approach using deep neural networks /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Predicting the lineage choice of hematopoietic stem cells/ by Manuel Kroiss.
Reminder of title:
a novel approach using deep neural networks /
Author:
Kroiss, Manuel.
Published:
Wiesbaden :Springer Fachmedien Wiesbaden : : 2016.,
Description:
xv, 68 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
Subject:
Hematopoietic stem cells. -
Online resource:
http://dx.doi.org/10.1007/978-3-658-12879-1
ISBN:
9783658128791
Predicting the lineage choice of hematopoietic stem cells = a novel approach using deep neural networks /
Kroiss, Manuel.
Predicting the lineage choice of hematopoietic stem cells
a novel approach using deep neural networks /[electronic resource] :by Manuel Kroiss. - Wiesbaden :Springer Fachmedien Wiesbaden :2016. - xv, 68 p. :ill., digital ;24 cm. - BestMasters. - BestMasters..
Machine Learning - Deep Learning -- Training Neural Networks -- Recurrent Neural Networks -- Stem Cell Classification Using Microscopy Images.
Manuel Kroiss examines the differentiation of hematopoietic stem cells using machine learning methods. This work is based on experiments focusing on the lineage choice of CMPs, the progenitors of HSCs, which either become MEP or GMP cells. The author presents a novel approach to distinguish MEP from GMP cells using machine learning on morphology features extracted from bright field images. He tests the performance of different models and focuses on Recurrent Neural Networks with the latest advances from the field of deep learning. Two different improvements to recurrent networks were tested: Long Short Term Memory (LSTM) cells that are able to remember information over long periods of time, and dropout regularization to prevent overfitting. With his method, Manuel Kroiss considerably outperforms standard machine learning methods without time information like Random Forests and Support Vector Machines. Contents Machine Learning - Deep Learning Training Neural Networks Recurrent Neural Networks Stem Cell Classification Using Microscopy Images Target Groups Teachers and students in the field of computer science and applied machine learning Executives and specialists in the field of neural networks and computational biology About the Author After finishing his MSc in Bioinformatics, Manuel Kroiss moved to London to work for a computer science company. In his work, the author is focusing on algorithmic problem solving while still remaining interested in applied machine learning.
ISBN: 9783658128791
Standard No.: 10.1007/978-3-658-12879-1doiSubjects--Topical Terms:
857347
Hematopoietic stem cells.
LC Class. No.: QH588.S83
Dewey Class. No.: 616.02774
Predicting the lineage choice of hematopoietic stem cells = a novel approach using deep neural networks /
LDR
:02665nam a2200325 a 4500
001
864112
003
DE-He213
005
20161020153102.0
006
m d
007
cr nn 008maaau
008
170720s2016 gw s 0 eng d
020
$a
9783658128791
$q
(electronic bk.)
020
$a
9783658128784
$q
(paper)
024
7
$a
10.1007/978-3-658-12879-1
$2
doi
035
$a
978-3-658-12879-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QH588.S83
072
7
$a
PNN
$2
bicssc
072
7
$a
SCI013040
$2
bisacsh
082
0 4
$a
616.02774
$2
23
090
$a
QH588.S83
$b
K93 2016
100
1
$a
Kroiss, Manuel.
$3
1108739
245
1 0
$a
Predicting the lineage choice of hematopoietic stem cells
$h
[electronic resource] :
$b
a novel approach using deep neural networks /
$c
by Manuel Kroiss.
260
$a
Wiesbaden :
$b
Springer Fachmedien Wiesbaden :
$b
Imprint: Springer Spektrum,
$c
2016.
300
$a
xv, 68 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
BestMasters
505
0
$a
Machine Learning - Deep Learning -- Training Neural Networks -- Recurrent Neural Networks -- Stem Cell Classification Using Microscopy Images.
520
$a
Manuel Kroiss examines the differentiation of hematopoietic stem cells using machine learning methods. This work is based on experiments focusing on the lineage choice of CMPs, the progenitors of HSCs, which either become MEP or GMP cells. The author presents a novel approach to distinguish MEP from GMP cells using machine learning on morphology features extracted from bright field images. He tests the performance of different models and focuses on Recurrent Neural Networks with the latest advances from the field of deep learning. Two different improvements to recurrent networks were tested: Long Short Term Memory (LSTM) cells that are able to remember information over long periods of time, and dropout regularization to prevent overfitting. With his method, Manuel Kroiss considerably outperforms standard machine learning methods without time information like Random Forests and Support Vector Machines. Contents Machine Learning - Deep Learning Training Neural Networks Recurrent Neural Networks Stem Cell Classification Using Microscopy Images Target Groups Teachers and students in the field of computer science and applied machine learning Executives and specialists in the field of neural networks and computational biology About the Author After finishing his MSc in Bioinformatics, Manuel Kroiss moved to London to work for a computer science company. In his work, the author is focusing on algorithmic problem solving while still remaining interested in applied machine learning.
650
0
$a
Hematopoietic stem cells.
$3
857347
650
1 4
$a
Chemistry.
$3
593913
650
2 4
$a
Organic Chemistry.
$3
673440
650
2 4
$a
Catalysis.
$3
673438
650
2 4
$a
Industrial Chemistry/Chemical Engineering.
$3
671153
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
BestMasters.
$3
1021672
856
4 0
$u
http://dx.doi.org/10.1007/978-3-658-12879-1
950
$a
Chemistry and Materials Science (Springer-11644)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login