Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Impacts of Deer and Earthworms on Un...
~
Dobson, Annise Marie.
Impacts of Deer and Earthworms on Understory Forest Plants.
Record Type:
Language materials, manuscript : Monograph/item
Title/Author:
Impacts of Deer and Earthworms on Understory Forest Plants./
Author:
Dobson, Annise Marie.
Description:
1 online resource (236 pages)
Notes:
Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
Contained By:
Dissertation Abstracts International79-10B(E).
Subject:
Ecology. -
Online resource:
click for full text (PQDT)
ISBN:
9780438026933
Impacts of Deer and Earthworms on Understory Forest Plants.
Dobson, Annise Marie.
Impacts of Deer and Earthworms on Understory Forest Plants.
- 1 online resource (236 pages)
Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
Thesis (Ph.D.)--Cornell University, 2018.
Includes bibliographical references
Northeastern North American forests experience a myriad of stressors, influencing their capacity to sustain diverse communities, provide ecosystem services and replenish valuable timber resources. Expansions of non-native earthworms and native white-tailed deer populations have occurred simultaneous with other stressors, but conservation and management mandates are focused on individual threats. Here, we provide a mechanistic explanation of the individual and combined effects of deer and earthworms on forest understory plant species using experimental plantings in a 2 x 2 factorial design. We seek to understand what makes many species decline under these altered forest conditions, and to test the viability of restoring plant communities. First, we assessed earthworm impacts on cycling of a broad spectrum of nutrients. We found earthworms are associated with lower soil P, but higher concentrations of other nutrients in the A horizon, including Ca, Mg, K and S. Despite this, we saw little rooting in the A horizon of earthworm invaded plots. This could be due to the stressful rooting conditions in the surface soil of the A horizon created by earthworm activity. If non-native plants that have coevolved with earthworms are able to access these nutrient-rich pools that are largely untapped by the background native vegetation, they may proliferate in earthworm-invaded forests. Of the native species were assessed, successful species were able to incorporate additional Ca into their tissues, and maintained consistent tissue P despite earthworm-associated depletions in soil. Species that declined could not capitalize on higher soil Ca in earthworm invaded plots, and had lower concentrations of P in roots and leaves. For the next two studies, we used transplant experiments of species with a breadth of growth forms to standardize species pools. We explored indirect methods of deer and earthworm impact on fine roots, mycorrhizal associations and soil nutrients. We found earthworms and/or deer decreased % colonization by arbuscular mycorrhizal fungi (AMF) in one species (Quercus) but not others, negatively affected soil nutrient concentrations and pools and increased or decreased the proportion of fine roots relative to total root length. However, this did not reliably translate to changes in seedling survival or biomass. Finally, we followed transplants of 20 native understory species over four to six years. Initially, seedlings of most species had poorer establishment in earthworm invaded plots, but by the end of the experiment, earthworms benefited 13 of 20 species and negatively affected five. Earthworm impacts on seedling survival was largely decoupled from impacts on growth and reproduction, with most species performing better in earthworm-invaded plots. Deer limited most species' growth, reproduction, and (to a lesser degree) survival, including tall, non- palatable species. Survival of species with high foliar nitrogen concentrations were slightly diminished in the presence of both deer and earthworms. Despite lower survival of some species in earthworm-invaded plots, we were successful in establishing shade-intolerant species into forests. This suggests that after initial changes to the forest floor from earthworm invasion have stabilized, restoration of the vegetation can be successful if it is paired with deer management.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780438026933Subjects--Topical Terms:
575279
Ecology.
Index Terms--Genre/Form:
554714
Electronic books.
Impacts of Deer and Earthworms on Understory Forest Plants.
LDR
:04613ntm a2200349Ki 4500
001
917242
005
20181009045510.5
006
m o u
007
cr mn||||a|a||
008
190606s2018 xx obm 000 0 eng d
020
$a
9780438026933
035
$a
(MiAaPQ)AAI10816187
035
$a
(MiAaPQ)cornellgrad:10830
035
$a
AAI10816187
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Dobson, Annise Marie.
$3
1191231
245
1 0
$a
Impacts of Deer and Earthworms on Understory Forest Plants.
264
0
$c
2018
300
$a
1 online resource (236 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500
$a
Adviser: Bernd Blossey.
502
$a
Thesis (Ph.D.)--Cornell University, 2018.
504
$a
Includes bibliographical references
520
$a
Northeastern North American forests experience a myriad of stressors, influencing their capacity to sustain diverse communities, provide ecosystem services and replenish valuable timber resources. Expansions of non-native earthworms and native white-tailed deer populations have occurred simultaneous with other stressors, but conservation and management mandates are focused on individual threats. Here, we provide a mechanistic explanation of the individual and combined effects of deer and earthworms on forest understory plant species using experimental plantings in a 2 x 2 factorial design. We seek to understand what makes many species decline under these altered forest conditions, and to test the viability of restoring plant communities. First, we assessed earthworm impacts on cycling of a broad spectrum of nutrients. We found earthworms are associated with lower soil P, but higher concentrations of other nutrients in the A horizon, including Ca, Mg, K and S. Despite this, we saw little rooting in the A horizon of earthworm invaded plots. This could be due to the stressful rooting conditions in the surface soil of the A horizon created by earthworm activity. If non-native plants that have coevolved with earthworms are able to access these nutrient-rich pools that are largely untapped by the background native vegetation, they may proliferate in earthworm-invaded forests. Of the native species were assessed, successful species were able to incorporate additional Ca into their tissues, and maintained consistent tissue P despite earthworm-associated depletions in soil. Species that declined could not capitalize on higher soil Ca in earthworm invaded plots, and had lower concentrations of P in roots and leaves. For the next two studies, we used transplant experiments of species with a breadth of growth forms to standardize species pools. We explored indirect methods of deer and earthworm impact on fine roots, mycorrhizal associations and soil nutrients. We found earthworms and/or deer decreased % colonization by arbuscular mycorrhizal fungi (AMF) in one species (Quercus) but not others, negatively affected soil nutrient concentrations and pools and increased or decreased the proportion of fine roots relative to total root length. However, this did not reliably translate to changes in seedling survival or biomass. Finally, we followed transplants of 20 native understory species over four to six years. Initially, seedlings of most species had poorer establishment in earthworm invaded plots, but by the end of the experiment, earthworms benefited 13 of 20 species and negatively affected five. Earthworm impacts on seedling survival was largely decoupled from impacts on growth and reproduction, with most species performing better in earthworm-invaded plots. Deer limited most species' growth, reproduction, and (to a lesser degree) survival, including tall, non- palatable species. Survival of species with high foliar nitrogen concentrations were slightly diminished in the presence of both deer and earthworms. Despite lower survival of some species in earthworm-invaded plots, we were successful in establishing shade-intolerant species into forests. This suggests that after initial changes to the forest floor from earthworm invasion have stabilized, restoration of the vegetation can be successful if it is paired with deer management.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Ecology.
$3
575279
650
4
$a
Forestry.
$3
668651
650
4
$a
Soil sciences.
$3
1179645
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0329
690
$a
0478
690
$a
0481
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Cornell University.
$b
Natural Resources.
$3
1191232
773
0
$t
Dissertation Abstracts International
$g
79-10B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10816187
$z
click for full text (PQDT)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login