Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Linear and Quasilinear Parabolic Pro...
~
SpringerLink (Online service)
Linear and Quasilinear Parabolic Problems = Volume II: Function Spaces /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Linear and Quasilinear Parabolic Problems/ by Herbert Amann.
Reminder of title:
Volume II: Function Spaces /
Author:
Amann, Herbert.
Description:
XVI, 462 p.online resource. :
Contained By:
Springer Nature eBook
Subject:
Functional analysis. -
Online resource:
https://doi.org/10.1007/978-3-030-11763-4
ISBN:
9783030117634
Linear and Quasilinear Parabolic Problems = Volume II: Function Spaces /
Amann, Herbert.
Linear and Quasilinear Parabolic Problems
Volume II: Function Spaces /[electronic resource] :by Herbert Amann. - 1st ed. 2019. - XVI, 462 p.online resource. - Monographs in Mathematics,1061017-0480 ;. - Monographs in Mathematics,105.
Restriction-Extension Pairs -- Sequence Spaces -- Anisotropy -- Classical Spaces -- Besov Spaces -- Intrinsic Norms, Slobodeckii and Hölder Spaces -- Bessel Potential Spaces -- Triebel-Lizorkin Spaces -- Point-Wise Multiplications -- Compactness -- Parameter-Dependent Spaces.
This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets. It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Hölder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems. The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant – in the realm of stochastic differential equations, for example.
ISBN: 9783030117634
Standard No.: 10.1007/978-3-030-11763-4doiSubjects--Topical Terms:
527706
Functional analysis.
LC Class. No.: QA319-329.9
Dewey Class. No.: 515.7
Linear and Quasilinear Parabolic Problems = Volume II: Function Spaces /
LDR
:02615nam a22003975i 4500
001
1006772
003
DE-He213
005
20200707003858.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783030117634
$9
978-3-030-11763-4
024
7
$a
10.1007/978-3-030-11763-4
$2
doi
035
$a
978-3-030-11763-4
050
4
$a
QA319-329.9
072
7
$a
PBKF
$2
bicssc
072
7
$a
MAT037000
$2
bisacsh
072
7
$a
PBKF
$2
thema
082
0 4
$a
515.7
$2
23
100
1
$a
Amann, Herbert.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
672598
245
1 0
$a
Linear and Quasilinear Parabolic Problems
$h
[electronic resource] :
$b
Volume II: Function Spaces /
$c
by Herbert Amann.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhäuser,
$c
2019.
300
$a
XVI, 462 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Monographs in Mathematics,
$x
1017-0480 ;
$v
106
505
0
$a
Restriction-Extension Pairs -- Sequence Spaces -- Anisotropy -- Classical Spaces -- Besov Spaces -- Intrinsic Norms, Slobodeckii and Hölder Spaces -- Bessel Potential Spaces -- Triebel-Lizorkin Spaces -- Point-Wise Multiplications -- Compactness -- Parameter-Dependent Spaces.
520
$a
This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets. It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Hölder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems. The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant – in the realm of stochastic differential equations, for example.
650
0
$a
Functional analysis.
$3
527706
650
1 4
$a
Functional Analysis.
$3
672166
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030117627
776
0 8
$i
Printed edition:
$z
9783030117641
830
0
$a
Monographs in Mathematics,
$x
1017-0480 ;
$v
105
$3
1271846
856
4 0
$u
https://doi.org/10.1007/978-3-030-11763-4
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login