Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Analyzing time interval data = intro...
~
Meisen, Philipp.
Analyzing time interval data = introducing an information system for time interval data analysis /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Analyzing time interval data/ by Philipp Meisen.
Reminder of title:
introducing an information system for time interval data analysis /
Author:
Meisen, Philipp.
Published:
Wiesbaden :Springer Fachmedien Wiesbaden : : 2016.,
Description:
xxxi, 232 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
Subject:
System analysis - Data processing. -
Online resource:
http://dx.doi.org/10.1007/978-3-658-15728-9
ISBN:
9783658157289
Analyzing time interval data = introducing an information system for time interval data analysis /
Meisen, Philipp.
Analyzing time interval data
introducing an information system for time interval data analysis /[electronic resource] :by Philipp Meisen. - Wiesbaden :Springer Fachmedien Wiesbaden :2016. - xxxi, 232 p. :ill., digital ;24 cm.
Modeling Time Interval Data -- Querying for Time Interval Data -- Similarity of Time Interval Data -- An Information System for Time Interval Data Analysis.
Philipp Meisen introduces a model, a query language, and a similarity measure enabling users to analyze time interval data. The introduced tools are combined to design and realize an information system. The presented system is capable of performing analytical tasks (avoiding any type of summarizability problems), providing insights, and visualizing results processing millions of intervals within milliseconds using an intuitive SQL-based query language. The heart of the solution is based on several bitmap-based indexes, which enable the system to handle huge amounts of time interval data. Contents Modeling Time Interval Data Querying for Time Interval Data Similarity of Time Interval Data An Information System for Time Interval Data Analysis Target Groups Researchers and students in the field of information management Business analysts and dispatchers in the fields of online analytical processing (OLAP), data warehousing (DW), business intelligence (BI), workforce management, and data science The Author Philipp Meisen holds a doctoral degree from RWTH Aachen, where he was a research group leader at the Chair of Information Management in Mechanical Engineering.
ISBN: 9783658157289
Standard No.: 10.1007/978-3-658-15728-9doiSubjects--Topical Terms:
682917
System analysis
--Data processing.
LC Class. No.: QA402
Dewey Class. No.: 519.5
Analyzing time interval data = introducing an information system for time interval data analysis /
LDR
:02336nam a2200325 a 4500
001
866945
003
DE-He213
005
20160913110619.0
006
m d
007
cr nn 008maaau
008
170720s2016 gw s 0 eng d
020
$a
9783658157289
$q
(electronic bk.)
020
$a
9783658157272
$q
(paper)
024
7
$a
10.1007/978-3-658-15728-9
$2
doi
035
$a
978-3-658-15728-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402
072
7
$a
UT
$2
bicssc
072
7
$a
COM069000
$2
bisacsh
072
7
$a
COM032000
$2
bisacsh
082
0 4
$a
519.5
$2
23
090
$a
QA402
$b
.M515 2016
100
1
$a
Meisen, Philipp.
$3
1113483
245
1 0
$a
Analyzing time interval data
$h
[electronic resource] :
$b
introducing an information system for time interval data analysis /
$c
by Philipp Meisen.
260
$a
Wiesbaden :
$b
Springer Fachmedien Wiesbaden :
$b
Imprint: Springer Vieweg,
$c
2016.
300
$a
xxxi, 232 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Modeling Time Interval Data -- Querying for Time Interval Data -- Similarity of Time Interval Data -- An Information System for Time Interval Data Analysis.
520
$a
Philipp Meisen introduces a model, a query language, and a similarity measure enabling users to analyze time interval data. The introduced tools are combined to design and realize an information system. The presented system is capable of performing analytical tasks (avoiding any type of summarizability problems), providing insights, and visualizing results processing millions of intervals within milliseconds using an intuitive SQL-based query language. The heart of the solution is based on several bitmap-based indexes, which enable the system to handle huge amounts of time interval data. Contents Modeling Time Interval Data Querying for Time Interval Data Similarity of Time Interval Data An Information System for Time Interval Data Analysis Target Groups Researchers and students in the field of information management Business analysts and dispatchers in the fields of online analytical processing (OLAP), data warehousing (DW), business intelligence (BI), workforce management, and data science The Author Philipp Meisen holds a doctoral degree from RWTH Aachen, where he was a research group leader at the Chair of Information Management in Mechanical Engineering.
650
0
$a
System analysis
$x
Data processing.
$3
682917
650
0
$a
Time.
$3
567857
650
1 4
$a
Computer Science.
$3
593922
650
2 4
$a
Information Systems and Communication Service.
$3
669203
650
2 4
$a
Data Structures, Cryptology and Information Theory.
$3
669665
650
2 4
$a
Software Engineering/Programming and Operating Systems.
$3
669780
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-658-15728-9
950
$a
Computer Science (Springer-11645)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login