Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Transparent data mining for big and ...
~
Cerquitelli, Tania.
Transparent data mining for big and small data
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Transparent data mining for big and small data/ edited by Tania Cerquitelli, Daniele Quercia, Frank Pasquale.
other author:
Cerquitelli, Tania.
Published:
Cham :Springer International Publishing : : 2017.,
Description:
xv, 215 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
Subject:
Data mining. -
Online resource:
http://dx.doi.org/10.1007/978-3-319-54024-5
ISBN:
9783319540245
Transparent data mining for big and small data
Transparent data mining for big and small data
[electronic resource] /edited by Tania Cerquitelli, Daniele Quercia, Frank Pasquale. - Cham :Springer International Publishing :2017. - xv, 215 p. :ill., digital ;24 cm. - Studies in big data,v.322197-6503 ;. - Studies in big data ;v.1..
Part I: Transparent Mining -- Chapter 1: The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good -- Chapter 2: Enabling Accountability of Algorithmic Media: Transparency as a Constructive and Critical Lens -- Chapter 3: The Princeton Web Transparency and Accountability Project -- Part II: Algorithmic solutions -- Chapter 4: Algorithmic Transparency via Quantitative Input Influence -- Chapter 5 -- Learning Interpretable Classification Rules with Boolean Compressed Sensing -- Chapter 6: Visualizations of Deep Neural Networks in Computer Vision: A Survey -- Part III: Regulatory solutions -- Chapter 7: Beyond the EULA: Improving Consent for Data Mining -- Chapter 8: Regulating Algorithms Regulation? First Ethico-legal Principles, Problems and Opportunities of Algorithms -- Chapter 9: Algorithm Watch: What Role Can a Watchdog Organization Play in Ensuring Algorithmic Accountability?
This book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches. As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use.
ISBN: 9783319540245
Standard No.: 10.1007/978-3-319-54024-5doiSubjects--Topical Terms:
528622
Data mining.
LC Class. No.: QA76.9.D343
Dewey Class. No.: 006.312
Transparent data mining for big and small data
LDR
:03009nam a2200337 a 4500
001
885401
003
DE-He213
005
20171225170628.0
006
m d
007
cr nn 008maaau
008
180530s2017 gw s 0 eng d
020
$a
9783319540245
$q
(electronic bk.)
020
$a
9783319540238
$q
(paper)
024
7
$a
10.1007/978-3-319-54024-5
$2
doi
035
$a
978-3-319-54024-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
072
7
$a
UNF
$2
bicssc
072
7
$a
UYQE
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
T772 2017
245
0 0
$a
Transparent data mining for big and small data
$h
[electronic resource] /
$c
edited by Tania Cerquitelli, Daniele Quercia, Frank Pasquale.
260
$a
Cham :
$c
2017.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xv, 215 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in big data,
$x
2197-6503 ;
$v
v.32
505
0
$a
Part I: Transparent Mining -- Chapter 1: The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good -- Chapter 2: Enabling Accountability of Algorithmic Media: Transparency as a Constructive and Critical Lens -- Chapter 3: The Princeton Web Transparency and Accountability Project -- Part II: Algorithmic solutions -- Chapter 4: Algorithmic Transparency via Quantitative Input Influence -- Chapter 5 -- Learning Interpretable Classification Rules with Boolean Compressed Sensing -- Chapter 6: Visualizations of Deep Neural Networks in Computer Vision: A Survey -- Part III: Regulatory solutions -- Chapter 7: Beyond the EULA: Improving Consent for Data Mining -- Chapter 8: Regulating Algorithms Regulation? First Ethico-legal Principles, Problems and Opportunities of Algorithms -- Chapter 9: Algorithm Watch: What Role Can a Watchdog Organization Play in Ensuring Algorithmic Accountability?
520
$a
This book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches. As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use.
650
0
$a
Data mining.
$3
528622
650
1 4
$a
Computer Science.
$3
593922
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
International IT and Media Law, Intellectual Property Law.
$3
884104
650
2 4
$a
Algorithm Analysis and Problem Complexity.
$3
593923
650
2 4
$a
Complexity.
$3
669595
650
2 4
$a
Simulation and Modeling.
$3
669249
650
2 4
$a
Big Data/Analytics.
$3
1106909
700
1
$a
Cerquitelli, Tania.
$3
1142568
700
1
$a
Quercia, Daniele.
$3
1142569
700
1
$a
Pasquale, Frank.
$3
1142570
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Studies in big data ;
$v
v.1.
$3
1020233
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-54024-5
950
$a
Engineering (Springer-11647)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login