Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Composing fisher kernels from deep n...
~
Azim, Tayyaba.
Composing fisher kernels from deep neural models = a practitioner's approach /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Composing fisher kernels from deep neural models/ by Tayyaba Azim, Sarah Ahmed.
Reminder of title:
a practitioner's approach /
Author:
Azim, Tayyaba.
other author:
Ahmed, Sarah.
Published:
Cham :Springer International Publishing : : 2018.,
Description:
xiii, 59 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
Subject:
Kernel functions. -
Online resource:
https://doi.org/10.1007/978-3-319-98524-4
ISBN:
9783319985244
Composing fisher kernels from deep neural models = a practitioner's approach /
Azim, Tayyaba.
Composing fisher kernels from deep neural models
a practitioner's approach /[electronic resource] :by Tayyaba Azim, Sarah Ahmed. - Cham :Springer International Publishing :2018. - xiii, 59 p. :ill., digital ;24 cm. - SpringerBriefs in computer science,2191-5768. - SpringerBriefs in computer science..
Chapter 1. Kernel Based Learning: A Pragmatic Approach in the Face of New Challenges -- Chapter 2. Fundamentals of Fisher Kernels -- Chapter 3. Training Deep Models and Deriving Fisher Kernels: A Step Wise Approach -- Chapter 4. Large Scale Image Retrieval and Its Challenges -- Chapter 5. Open Source Knowledge Base for Machine Learning Practitioners.
ISBN: 9783319985244
Standard No.: 10.1007/978-3-319-98524-4doiSubjects--Topical Terms:
561254
Kernel functions.
LC Class. No.: QA353.K47
Dewey Class. No.: 515.7
Composing fisher kernels from deep neural models = a practitioner's approach /
LDR
:01386nam a2200325 a 4500
001
928316
003
DE-He213
005
20180829123626.0
006
m d
007
cr nn 008maaau
008
190626s2018 gw s 0 eng d
020
$a
9783319985244
$q
(electronic bk.)
020
$a
9783319985237
$q
(paper)
024
7
$a
10.1007/978-3-319-98524-4
$2
doi
035
$a
978-3-319-98524-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA353.K47
072
7
$a
UYQP
$2
bicssc
072
7
$a
COM016000
$2
bisacsh
072
7
$a
UYQP
$2
thema
082
0 4
$a
515.7
$2
23
090
$a
QA353.K47
$b
A995 2018
100
1
$a
Azim, Tayyaba.
$3
1208235
245
1 0
$a
Composing fisher kernels from deep neural models
$h
[electronic resource] :
$b
a practitioner's approach /
$c
by Tayyaba Azim, Sarah Ahmed.
260
$a
Cham :
$c
2018.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xiii, 59 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5768
505
0
$a
Chapter 1. Kernel Based Learning: A Pragmatic Approach in the Face of New Challenges -- Chapter 2. Fundamentals of Fisher Kernels -- Chapter 3. Training Deep Models and Deriving Fisher Kernels: A Step Wise Approach -- Chapter 4. Large Scale Image Retrieval and Its Challenges -- Chapter 5. Open Source Knowledge Base for Machine Learning Practitioners.
650
0
$a
Kernel functions.
$3
561254
650
0
$a
Support vector machines.
$3
641425
650
1 4
$a
Pattern Recognition.
$3
669796
650
2 4
$a
Signal, Image and Speech Processing.
$3
670837
650
2 4
$a
Information Storage and Retrieval.
$3
593926
650
2 4
$a
Probability and Statistics in Computer Science.
$3
669886
650
2 4
$a
Data Storage Representation.
$3
669777
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
593924
700
1
$a
Ahmed, Sarah.
$3
1208236
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in computer science.
$3
883114
856
4 0
$u
https://doi.org/10.1007/978-3-319-98524-4
950
$a
Computer Science (Springer-11645)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login