Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Intelligent Techniques for Data Science
~
Sajja, Priti Srinivas.
Intelligent Techniques for Data Science
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Intelligent Techniques for Data Science/ by Rajendra Akerkar, Priti Srinivas Sajja.
Author:
Akerkar, Rajendra.
other author:
Sajja, Priti Srinivas.
Description:
XVI, 272 p. 121 illus., 57 illus. in color.online resource. :
Contained By:
Springer Nature eBook
Subject:
Data mining. -
Online resource:
https://doi.org/10.1007/978-3-319-29206-9
ISBN:
9783319292069
Intelligent Techniques for Data Science
Akerkar, Rajendra.
Intelligent Techniques for Data Science
[electronic resource] /by Rajendra Akerkar, Priti Srinivas Sajja. - 1st ed. 2016. - XVI, 272 p. 121 illus., 57 illus. in color.online resource.
Preface -- Introduction -- Data Analytics -- Basic Learning Algorithms -- Fuzzy Logic -- Artificial Neural Networks -- Genetic Algorithms and Evolutionary Computing -- Other Metaheuristics and Classification Approaches -- Analytics and Big Data -- Data Analytics Using R -- Appendix I: Tools for Data Science -- Appendix II: Tools for Computational Intelligence.
This textbook provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. These embrace the family of neural networks, fuzzy systems and evolutionary computing in addition to other fields within machine learning, and will help in identifying, visualizing, classifying and analyzing data to support business decisions. The authors, discuss advantages and drawbacks of different approaches, and present a sound foundation for the reader to design and implement data analytic solutions for applications in an intelligent manner. Intelligent Techniques for Data Science also provides real-world cases of extracting value from data in various domains such as retail, health, aviation, telecommunication and tourism.
ISBN: 9783319292069
Standard No.: 10.1007/978-3-319-29206-9doiSubjects--Topical Terms:
528622
Data mining.
LC Class. No.: QA76.9.D343
Dewey Class. No.: 006.312
Intelligent Techniques for Data Science
LDR
:02513nam a22004095i 4500
001
980765
003
DE-He213
005
20200705022927.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319292069
$9
978-3-319-29206-9
024
7
$a
10.1007/978-3-319-29206-9
$2
doi
035
$a
978-3-319-29206-9
050
4
$a
QA76.9.D343
072
7
$a
UNF
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
072
7
$a
UNF
$2
thema
072
7
$a
UYQE
$2
thema
082
0 4
$a
006.312
$2
23
100
1
$a
Akerkar, Rajendra.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
716097
245
1 0
$a
Intelligent Techniques for Data Science
$h
[electronic resource] /
$c
by Rajendra Akerkar, Priti Srinivas Sajja.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
XVI, 272 p. 121 illus., 57 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Preface -- Introduction -- Data Analytics -- Basic Learning Algorithms -- Fuzzy Logic -- Artificial Neural Networks -- Genetic Algorithms and Evolutionary Computing -- Other Metaheuristics and Classification Approaches -- Analytics and Big Data -- Data Analytics Using R -- Appendix I: Tools for Data Science -- Appendix II: Tools for Computational Intelligence.
520
$a
This textbook provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. These embrace the family of neural networks, fuzzy systems and evolutionary computing in addition to other fields within machine learning, and will help in identifying, visualizing, classifying and analyzing data to support business decisions. The authors, discuss advantages and drawbacks of different approaches, and present a sound foundation for the reader to design and implement data analytic solutions for applications in an intelligent manner. Intelligent Techniques for Data Science also provides real-world cases of extracting value from data in various domains such as retail, health, aviation, telecommunication and tourism.
650
0
$a
Data mining.
$3
528622
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Knowledge management.
$3
558406
650
1 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Knowledge Management.
$3
679530
700
1
$a
Sajja, Priti Srinivas.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1114488
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319292052
776
0 8
$i
Printed edition:
$z
9783319292076
776
0 8
$i
Printed edition:
$z
9783319805146
856
4 0
$u
https://doi.org/10.1007/978-3-319-29206-9
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login