語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Data architecture = a primer for the...
~
Levins, Mary,
Data architecture = a primer for the data scientist /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Data architecture/ W.H. Inmon, Daniel Linstedt, Mary Levins.
其他題名:
a primer for the data scientist /
作者:
Inmon, W. H.,
其他作者:
Linst, Daniel,
出版者:
London :Academic Press, : 2019.,
面頁冊數:
1 online resource (xv, 416 p.) :ill. :
附註:
Includes index.
標題:
Data warehousing. -
電子資源:
https://www.sciencedirect.com/science/book/9780128169162
ISBN:
9780128169179 (electronic bk.)
Data architecture = a primer for the data scientist /
Inmon, W. H.,
Data architecture
a primer for the data scientist /[electronic resource] :W.H. Inmon, Daniel Linstedt, Mary Levins. - Second Edition. - London :Academic Press,2019. - 1 online resource (xv, 416 p.) :ill.
Includes index.
1. Introduction to architecture<br>2. "Diagram of the world;, end state architecture<br>3. Transformation and redundancy<br>4. Big Data<br>5. Siloed applications<br>6. Data vault<br>7. Data lake, ponds, landing zone<br>8. IoT, Edge computing <br>9. Operational environment<br>10. The evolution of data architecture <br>11. Repetitive data, the sandbox <br>12. Non-repetitive data, contextualization <br>13. Operational performance <br>14. Integration of data <br>15. Personal computing <br>16. Managing text, taxonomies <br>17. System of record <br>18. The intellectual roadmap -- data modelling, taxonomies, etc. <br>19. Business value across the architecture <br>20. Virtualization, streaming <br>21. The end of evolution
Data Architecture: A Primer for the Data Scientist: Big Data, Data Warehouse and Data Vault, Second Edition, addresses how Big Data fits within the existing information infrastructure and data warehousing systems. This is an essential topic as researchers and engineers increasingly need to deal with large and complex sets of data. Until data is gathered and placed into an existing framework or architecture, it cannot be used to its full potential. Drawing upon years of practical experience and using numerous examples and case studies from across industries, the authors explain where Big Data fits, giving data scientists the necessary context for how pieces of the puzzle should fit together.
ISBN: 9780128169179 (electronic bk.)Subjects--Topical Terms:
561693
Data warehousing.
Index Terms--Genre/Form:
554714
Electronic books.
LC Class. No.: QA76.9.D37 / .I56 2019eb
Dewey Class. No.: 005.745
Data architecture = a primer for the data scientist /
LDR
:02401cam a2200277 a 4500
001
1000303
006
o d
007
cnu|unuuu||
008
201225s2019 enk o 001 0 eng d
020
$a
9780128169179 (electronic bk.)
020
$a
0128169176 (electronic bk.)
020
$a
9780128169162
035
$a
(OCoLC)1099675091
035
$a
EL2020122
040
$a
N$T
$b
eng
$c
N$T
$d
N$T
$d
OPELS
$d
UKMGB
$d
OCLCF
$d
YDX
$d
CNO
$d
OCLCO
$d
OTZ
$d
OCL
$d
UKAHL
041
0
$a
eng
050
4
$a
QA76.9.D37
$b
.I56 2019eb
082
0 4
$a
005.745
$2
23
100
1
$a
Inmon, W. H.,
$e
author.
$3
1292665
245
1 0
$a
Data architecture
$h
[electronic resource] :
$b
a primer for the data scientist /
$c
W.H. Inmon, Daniel Linstedt, Mary Levins.
250
$a
Second Edition.
260
$a
London :
$b
Academic Press,
$c
2019.
300
$a
1 online resource (xv, 416 p.) :
$b
ill.
500
$a
Includes index.
505
0
$a
1. Introduction to architecture<br>2. "Diagram of the world;, end state architecture<br>3. Transformation and redundancy<br>4. Big Data<br>5. Siloed applications<br>6. Data vault<br>7. Data lake, ponds, landing zone<br>8. IoT, Edge computing <br>9. Operational environment<br>10. The evolution of data architecture <br>11. Repetitive data, the sandbox <br>12. Non-repetitive data, contextualization <br>13. Operational performance <br>14. Integration of data <br>15. Personal computing <br>16. Managing text, taxonomies <br>17. System of record <br>18. The intellectual roadmap -- data modelling, taxonomies, etc. <br>19. Business value across the architecture <br>20. Virtualization, streaming <br>21. The end of evolution
520
$a
Data Architecture: A Primer for the Data Scientist: Big Data, Data Warehouse and Data Vault, Second Edition, addresses how Big Data fits within the existing information infrastructure and data warehousing systems. This is an essential topic as researchers and engineers increasingly need to deal with large and complex sets of data. Until data is gathered and placed into an existing framework or architecture, it cannot be used to its full potential. Drawing upon years of practical experience and using numerous examples and case studies from across industries, the authors explain where Big Data fits, giving data scientists the necessary context for how pieces of the puzzle should fit together.
588
0
$a
Online resource; title from PDF title page (EBSCO, viewed May 6, 2019).
650
0
$a
Data warehousing.
$3
561693
650
0
$a
Big data.
$3
981821
650
0
$a
Electronic data processing.
$3
674987
650
0
$a
Information retrieval.
$3
563691
655
4
$a
Electronic books.
$2
local
$3
554714
700
1
$a
Linst, Daniel,
$e
author.
$3
1292666
700
1
$a
Levins, Mary,
$e
author.
$3
1292667
856
4 0
$u
https://www.sciencedirect.com/science/book/9780128169162
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入