語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Dynamics of Parallel Robots
~
SpringerLink (Online service)
Dynamics of Parallel Robots
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Dynamics of Parallel Robots/ by Stefan Staicu.
作者:
Staicu, Stefan.
面頁冊數:
XVII, 326 p. 179 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Control engineering. -
電子資源:
https://doi.org/10.1007/978-3-319-99522-9
ISBN:
9783319995229
Dynamics of Parallel Robots
Staicu, Stefan.
Dynamics of Parallel Robots
[electronic resource] /by Stefan Staicu. - 1st ed. 2019. - XVII, 326 p. 179 illus.online resource. - Parallel Robots: Theory and Applications,2524-6232. - Parallel Robots: Theory and Applications,.
1 Introduction -- 1.1 Robotic systems -- 1.2 Historical development -- 1.3 Mechanics of robots -- 2 Matrix kinematics of the rigid body -- 2.1 Position and orientation of a rigid body -- 2.2 Velocity field -- 2.3 Acceleration field -- 2.4 Twist of velocity field of a rigid body -- 2.5 Types of rigid body motions -- 3 Matrix kinematics of composed motion -- 3.1 Kinematics of composed motion of a point -- 3.2 Kinematics of composed motion of a rigid body -- 3.3 Application to kinematics analysis of mechanisms -- 4 Kinetics of the rigid body -- 4.1 Centre of mass and tensor of static moments of a rigid body -- 4.2 Moments of inertia of a rigid body -- 4.3 Kinetic impulse of a system of particles -- 4.4 Kinetic moment of a rigid body -- 4.5 Kinetic energy of a rigid body -- 4.6 Power and work of the forces acting on a system of particles -- 4.7 Power and work of the forces acting on a rigid body -- 5 Dynamics of the rigid body -- 5.1 Fundamental system of differential equations of motion for a system of particles -- 5.2 Theorem of kinetic impulse -- 5.3 Theorem of kinetic moment -- 5.4 Theorem of kinetic moment with respect to a translating frame -- 5.5 Theorem of kinetic energy -- 5.6 Conservation of mechanical energy -- 5.7 Theorem of kinetic energy with respect to a translating frame -- 5.8 Equations of motion in dynamics of the rigid body -- 6 Analytical Mechanics -- 6.1 Principle of virtual work -- 6.2 D’Alembert principle -- 6.3 Lagrange equations -- 6.4 Canonical Hamiltonian equations -- 7 Dynamics of constrained robotic systems -- 7.1 Geometric model of the robot -- 7.2 Velocities and accelerations -- 7.3 Equations of motion -- 7.4 Advantages of the present method -- 7.5 Application to dynamics analysis of mechanisms -- 8 Planar parallel robots -- 8.1 Power requirement comparison in dynamics of the 3-PRR planar parallel robot -- 8.2 Internal reaction joint forces in dynamics of the 3-RRR planar parallel robot -- 8.3 Inverse kinematics and dynamics of a 3-PRP planar parallel robot -- 9 Spatial parallel robots -- 9.1 Dynamics modelling of Delta translational parallel robot -- 9.2 Inverse dynamics of Agile Wrist spherical parallel robot -- 9.3 Dynamics of the 6-6 Stewart parallel manipulator -- 9.4 Internal joint forces in dynamics of a 3-RPS parallel manipulator -- 10 Geared parallel mechanisms -- 10.1 Kinematics and dynamics analysis of the Minuteman cover drive -- 10.2 Inverse dynamics of a 2-DOF orienting gear train -- 10.3 Dynamics analysis of the Cincinnati-Milacron wrist robot -- 11 Mobile wheeled robots -- 11.1 Kinematics and dynamics of a mobile robot provided with caster wheel -- 11.2 Dynamics of the non-holonomic two-wheeled pendulum robot -- 12 Kinematics and dynamics of a hybrid parallel manipulator -- 12.1 Structural description of the hybrid parallel manipulator -- 12.2 Kinematics analysis -- 12.3 Inverse dynamics model -- References.
This book establishes recursive relations concerning kinematics and dynamics of constrained robotic systems. It uses matrix modeling to determine the connectivity conditions on the relative velocities and accelerations in order to compare two efficient energetic ways in dynamics modeling: the principle of virtual work, and the formalism of Lagrange's equations. First, a brief fundamental theory is presented on matrix mechanics of the rigid body, which is then developed in the following five chapters treating matrix kinematics of the rigid body, matrix kinematics of the composed motion, kinetics of the rigid body, dynamics of the rigid body, and analytical mechanics. By using a set of successive mobile frames, the geometrical properties and the kinematics of the vector system of velocities and accelerations for each element of the robot are analysed. The dynamics problem is solved in two energetic ways: using an approach based on the principle of virtual work and applying the formalism of Lagrange's equations of the second kind. These are shown to be useful for real-time control of the robot's evolution. Then the recursive matrix method is applied to the kinematics and dynamics analysis of five distinct case studies: planar parallel manipulators, spatial parallel robots, planetary gear trains, mobile wheeled robots and, finally, two-module hybrid parallel robots.
ISBN: 9783319995229
Standard No.: 10.1007/978-3-319-99522-9doiSubjects--Topical Terms:
1249728
Control engineering.
LC Class. No.: TJ210.2-211.495
Dewey Class. No.: 629.8
Dynamics of Parallel Robots
LDR
:05755nam a22004335i 4500
001
1003831
003
DE-He213
005
20200701213400.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783319995229
$9
978-3-319-99522-9
024
7
$a
10.1007/978-3-319-99522-9
$2
doi
035
$a
978-3-319-99522-9
050
4
$a
TJ210.2-211.495
050
4
$a
TJ163.12
072
7
$a
TJFM
$2
bicssc
072
7
$a
TEC004000
$2
bisacsh
072
7
$a
TJFM
$2
thema
072
7
$a
TJFD
$2
thema
082
0 4
$a
629.8
$2
23
100
1
$a
Staicu, Stefan.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1297189
245
1 0
$a
Dynamics of Parallel Robots
$h
[electronic resource] /
$c
by Stefan Staicu.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
XVII, 326 p. 179 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Parallel Robots: Theory and Applications,
$x
2524-6232
505
0
$a
1 Introduction -- 1.1 Robotic systems -- 1.2 Historical development -- 1.3 Mechanics of robots -- 2 Matrix kinematics of the rigid body -- 2.1 Position and orientation of a rigid body -- 2.2 Velocity field -- 2.3 Acceleration field -- 2.4 Twist of velocity field of a rigid body -- 2.5 Types of rigid body motions -- 3 Matrix kinematics of composed motion -- 3.1 Kinematics of composed motion of a point -- 3.2 Kinematics of composed motion of a rigid body -- 3.3 Application to kinematics analysis of mechanisms -- 4 Kinetics of the rigid body -- 4.1 Centre of mass and tensor of static moments of a rigid body -- 4.2 Moments of inertia of a rigid body -- 4.3 Kinetic impulse of a system of particles -- 4.4 Kinetic moment of a rigid body -- 4.5 Kinetic energy of a rigid body -- 4.6 Power and work of the forces acting on a system of particles -- 4.7 Power and work of the forces acting on a rigid body -- 5 Dynamics of the rigid body -- 5.1 Fundamental system of differential equations of motion for a system of particles -- 5.2 Theorem of kinetic impulse -- 5.3 Theorem of kinetic moment -- 5.4 Theorem of kinetic moment with respect to a translating frame -- 5.5 Theorem of kinetic energy -- 5.6 Conservation of mechanical energy -- 5.7 Theorem of kinetic energy with respect to a translating frame -- 5.8 Equations of motion in dynamics of the rigid body -- 6 Analytical Mechanics -- 6.1 Principle of virtual work -- 6.2 D’Alembert principle -- 6.3 Lagrange equations -- 6.4 Canonical Hamiltonian equations -- 7 Dynamics of constrained robotic systems -- 7.1 Geometric model of the robot -- 7.2 Velocities and accelerations -- 7.3 Equations of motion -- 7.4 Advantages of the present method -- 7.5 Application to dynamics analysis of mechanisms -- 8 Planar parallel robots -- 8.1 Power requirement comparison in dynamics of the 3-PRR planar parallel robot -- 8.2 Internal reaction joint forces in dynamics of the 3-RRR planar parallel robot -- 8.3 Inverse kinematics and dynamics of a 3-PRP planar parallel robot -- 9 Spatial parallel robots -- 9.1 Dynamics modelling of Delta translational parallel robot -- 9.2 Inverse dynamics of Agile Wrist spherical parallel robot -- 9.3 Dynamics of the 6-6 Stewart parallel manipulator -- 9.4 Internal joint forces in dynamics of a 3-RPS parallel manipulator -- 10 Geared parallel mechanisms -- 10.1 Kinematics and dynamics analysis of the Minuteman cover drive -- 10.2 Inverse dynamics of a 2-DOF orienting gear train -- 10.3 Dynamics analysis of the Cincinnati-Milacron wrist robot -- 11 Mobile wheeled robots -- 11.1 Kinematics and dynamics of a mobile robot provided with caster wheel -- 11.2 Dynamics of the non-holonomic two-wheeled pendulum robot -- 12 Kinematics and dynamics of a hybrid parallel manipulator -- 12.1 Structural description of the hybrid parallel manipulator -- 12.2 Kinematics analysis -- 12.3 Inverse dynamics model -- References.
520
$a
This book establishes recursive relations concerning kinematics and dynamics of constrained robotic systems. It uses matrix modeling to determine the connectivity conditions on the relative velocities and accelerations in order to compare two efficient energetic ways in dynamics modeling: the principle of virtual work, and the formalism of Lagrange's equations. First, a brief fundamental theory is presented on matrix mechanics of the rigid body, which is then developed in the following five chapters treating matrix kinematics of the rigid body, matrix kinematics of the composed motion, kinetics of the rigid body, dynamics of the rigid body, and analytical mechanics. By using a set of successive mobile frames, the geometrical properties and the kinematics of the vector system of velocities and accelerations for each element of the robot are analysed. The dynamics problem is solved in two energetic ways: using an approach based on the principle of virtual work and applying the formalism of Lagrange's equations of the second kind. These are shown to be useful for real-time control of the robot's evolution. Then the recursive matrix method is applied to the kinematics and dynamics analysis of five distinct case studies: planar parallel manipulators, spatial parallel robots, planetary gear trains, mobile wheeled robots and, finally, two-module hybrid parallel robots.
650
0
$a
Control engineering.
$3
1249728
650
0
$a
Robotics.
$3
561941
650
0
$a
Mechatronics.
$3
559133
650
0
$a
Machinery.
$3
990113
650
0
$a
Artificial intelligence.
$3
559380
650
1 4
$a
Control, Robotics, Mechatronics.
$3
768396
650
2 4
$a
Machinery and Machine Elements.
$3
670866
650
2 4
$a
Artificial Intelligence.
$3
646849
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319995212
776
0 8
$i
Printed edition:
$z
9783319995236
776
0 8
$i
Printed edition:
$z
9783030076047
830
0
$a
Parallel Robots: Theory and Applications,
$x
2524-6232
$3
1297190
856
4 0
$u
https://doi.org/10.1007/978-3-319-99522-9
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入