語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Building Machine Learning and Deep L...
~
Bisong, Ekaba.
Building Machine Learning and Deep Learning Models on Google Cloud Platform = A Comprehensive Guide for Beginners /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Building Machine Learning and Deep Learning Models on Google Cloud Platform/ by Ekaba Bisong.
其他題名:
A Comprehensive Guide for Beginners /
作者:
Bisong, Ekaba.
面頁冊數:
XXIX, 709 p. 348 illus., 344 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Artificial intelligence. -
電子資源:
https://doi.org/10.1007/978-1-4842-4470-8
ISBN:
9781484244708
Building Machine Learning and Deep Learning Models on Google Cloud Platform = A Comprehensive Guide for Beginners /
Bisong, Ekaba.
Building Machine Learning and Deep Learning Models on Google Cloud Platform
A Comprehensive Guide for Beginners /[electronic resource] :by Ekaba Bisong. - 1st ed. 2019. - XXIX, 709 p. 348 illus., 344 illus. in color.online resource.
Part 1: Getting Started with Google Cloud Platform -- Chapter 1: What Is Cloud Computing? -- Chapter 2: An Overview of Google Cloud Platform Services -- Chapter 3: The Google Cloud SDK and Web CLI -- Chapter 4: Google Cloud Storage (GCS) -- Chapter 5: Google Compute Engine (GCE) -- Chapter 6: JupyterLab Notebooks -- Chapter 7: Google Colaboratory -- Part 2: Programming Foundations for Data Science -- Chapter 8: What is Data Science? -- Chapter 9: Python -- Chapter 10: Numpy -- Chapter 11: Pandas -- Chapter 12: Matplotlib and Seaborn -- Part 3: Introducing Machine Learning -- Chapter 13: What Is Machine Learning? -- Chapter 14: Principles of Learning -- Chapter 15: Batch vs. Online Learning -- Chapter 16: Optimization for Machine Learning: Gradient Descent -- Chapter 17: Learning Algorithms -- Part 4: Machine Learning in Practice -- Chapter 18: Introduction to Scikit-learn -- Chapter 19: Linear Regression -- Chapter 20: Logistic Regression -- Chapter 21: Regularization for Linear Models -- Chapter 22: Support Vector Machines -- Chapter 23: Ensemble Methods -- Chapter 24: More Supervised Machine Learning Techniques with Scikit-learn -- Chapter 25: Clustering -- Chapter 26: Principal Components Analysis (PCA) -- Part 5: Introducing Deep Learning -- Chapter 27: What is Deep Learning? -- Chapter 28: Neural Network Foundations -- Chapter 29: Training a Neural Network -- Part 6: Deep Learning in Practice -- Chapter 30: TensorFlow 2.0 and Keras -- Chapter 31: The Multilayer Perceptron (MLP) -- Chapter 32: Other Considerations for Training the Network -- Chapter 33: More on Optimization Techniques -- Chapter 34: Regularization for Deep Learning -- Chapter 35: Convolutional Neural Networks (CNN) -- Chapter 36: Recurrent Neural Networks (RNN) -- Chapter 37: Autoencoders -- Part 7: Advanced Analytics/ Machine Learning on Google Cloud Platform -- Chapter 38: Google BigQuery -- Chapter 39: Google Cloud Dataprep -- Chapter 40: Google Cloud Dataflow -- Chapter 41: Google Cloud Machine Learning Engine (Cloud MLE) -- Chapter 42: Google AutoML: Cloud Vision -- Chapter 43: Google AutoML: Cloud Natural Language Processing -- Chapter 44: Model to Predict the Critical Temperature of Superconductors -- Part 8: Productionalizing Machine Learning Solutions on GCP -- Chapter 45: Containers and Google Kubernetes Engine -- Chapter 46: Kubeflow and Kubeflow Pipelines -- Chapter 47: Deploying an End-to-End Machine Learning Solution on Kubeflow Pipelines -- .
Take a systematic approach to understanding the fundamentals of machine learning and deep learning from the ground up and how they are applied in practice. You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform. Author Ekaba Bisong shows you how machine learning tools and techniques are used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. He teaches you how deep learning extends the machine learning algorithm of neural networks to learn complex tasks that are difficult for computers to perform, such as recognizing faces and understanding languages. And you will know how to leverage cloud computing to accelerate data science and machine learning deployments. Building Machine Learning and Deep Learning Models on Google Cloud Platform is divided into eight parts that cover the fundamentals of machine learning and deep learning, the concept of data science and cloud services, programming for data science using the Python stack, Google Cloud Platform (GCP) infrastructure and products, advanced analytics on GCP, and deploying end-to-end machine learning solution pipelines on GCP. You will: Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your results Know the programming concepts relevant to machine and deep learning design and development using the Python stack Build and interpret machine and deep learning models Use Google Cloud Platform tools and services to develop and deploy large-scale machine learning and deep learning products Be aware of the different facets and design choices to consider when modeling a learning problem Productionalize machine learning models into software products.
ISBN: 9781484244708
Standard No.: 10.1007/978-1-4842-4470-8doiSubjects--Topical Terms:
559380
Artificial intelligence.
LC Class. No.: Q334-342
Dewey Class. No.: 006.3
Building Machine Learning and Deep Learning Models on Google Cloud Platform = A Comprehensive Guide for Beginners /
LDR
:05771nam a22003855i 4500
001
1004032
003
DE-He213
005
20200702150926.0
007
cr nn 008mamaa
008
210106s2019 xxu| s |||| 0|eng d
020
$a
9781484244708
$9
978-1-4842-4470-8
024
7
$a
10.1007/978-1-4842-4470-8
$2
doi
035
$a
978-1-4842-4470-8
050
4
$a
Q334-342
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Bisong, Ekaba.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1297425
245
1 0
$a
Building Machine Learning and Deep Learning Models on Google Cloud Platform
$h
[electronic resource] :
$b
A Comprehensive Guide for Beginners /
$c
by Ekaba Bisong.
250
$a
1st ed. 2019.
264
1
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2019.
300
$a
XXIX, 709 p. 348 illus., 344 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Part 1: Getting Started with Google Cloud Platform -- Chapter 1: What Is Cloud Computing? -- Chapter 2: An Overview of Google Cloud Platform Services -- Chapter 3: The Google Cloud SDK and Web CLI -- Chapter 4: Google Cloud Storage (GCS) -- Chapter 5: Google Compute Engine (GCE) -- Chapter 6: JupyterLab Notebooks -- Chapter 7: Google Colaboratory -- Part 2: Programming Foundations for Data Science -- Chapter 8: What is Data Science? -- Chapter 9: Python -- Chapter 10: Numpy -- Chapter 11: Pandas -- Chapter 12: Matplotlib and Seaborn -- Part 3: Introducing Machine Learning -- Chapter 13: What Is Machine Learning? -- Chapter 14: Principles of Learning -- Chapter 15: Batch vs. Online Learning -- Chapter 16: Optimization for Machine Learning: Gradient Descent -- Chapter 17: Learning Algorithms -- Part 4: Machine Learning in Practice -- Chapter 18: Introduction to Scikit-learn -- Chapter 19: Linear Regression -- Chapter 20: Logistic Regression -- Chapter 21: Regularization for Linear Models -- Chapter 22: Support Vector Machines -- Chapter 23: Ensemble Methods -- Chapter 24: More Supervised Machine Learning Techniques with Scikit-learn -- Chapter 25: Clustering -- Chapter 26: Principal Components Analysis (PCA) -- Part 5: Introducing Deep Learning -- Chapter 27: What is Deep Learning? -- Chapter 28: Neural Network Foundations -- Chapter 29: Training a Neural Network -- Part 6: Deep Learning in Practice -- Chapter 30: TensorFlow 2.0 and Keras -- Chapter 31: The Multilayer Perceptron (MLP) -- Chapter 32: Other Considerations for Training the Network -- Chapter 33: More on Optimization Techniques -- Chapter 34: Regularization for Deep Learning -- Chapter 35: Convolutional Neural Networks (CNN) -- Chapter 36: Recurrent Neural Networks (RNN) -- Chapter 37: Autoencoders -- Part 7: Advanced Analytics/ Machine Learning on Google Cloud Platform -- Chapter 38: Google BigQuery -- Chapter 39: Google Cloud Dataprep -- Chapter 40: Google Cloud Dataflow -- Chapter 41: Google Cloud Machine Learning Engine (Cloud MLE) -- Chapter 42: Google AutoML: Cloud Vision -- Chapter 43: Google AutoML: Cloud Natural Language Processing -- Chapter 44: Model to Predict the Critical Temperature of Superconductors -- Part 8: Productionalizing Machine Learning Solutions on GCP -- Chapter 45: Containers and Google Kubernetes Engine -- Chapter 46: Kubeflow and Kubeflow Pipelines -- Chapter 47: Deploying an End-to-End Machine Learning Solution on Kubeflow Pipelines -- .
520
$a
Take a systematic approach to understanding the fundamentals of machine learning and deep learning from the ground up and how they are applied in practice. You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform. Author Ekaba Bisong shows you how machine learning tools and techniques are used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. He teaches you how deep learning extends the machine learning algorithm of neural networks to learn complex tasks that are difficult for computers to perform, such as recognizing faces and understanding languages. And you will know how to leverage cloud computing to accelerate data science and machine learning deployments. Building Machine Learning and Deep Learning Models on Google Cloud Platform is divided into eight parts that cover the fundamentals of machine learning and deep learning, the concept of data science and cloud services, programming for data science using the Python stack, Google Cloud Platform (GCP) infrastructure and products, advanced analytics on GCP, and deploying end-to-end machine learning solution pipelines on GCP. You will: Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your results Know the programming concepts relevant to machine and deep learning design and development using the Python stack Build and interpret machine and deep learning models Use Google Cloud Platform tools and services to develop and deploy large-scale machine learning and deep learning products Be aware of the different facets and design choices to consider when modeling a learning problem Productionalize machine learning models into software products.
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Big data.
$3
981821
650
1 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Big Data.
$3
1017136
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9781484244692
776
0 8
$i
Printed edition:
$z
9781484244715
856
4 0
$u
https://doi.org/10.1007/978-1-4842-4470-8
912
$a
ZDB-2-CWD
912
$a
ZDB-2-SXPC
950
$a
Professional and Applied Computing (SpringerNature-12059)
950
$a
Professional and Applied Computing (R0) (SpringerNature-43716)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入