語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
An Introduction to Quantum and Vassi...
~
Moffatt, Iain.
An Introduction to Quantum and Vassiliev Knot Invariants
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
An Introduction to Quantum and Vassiliev Knot Invariants/ by David M. Jackson, Iain Moffatt.
作者:
Jackson, David M.
其他作者:
Moffatt, Iain.
面頁冊數:
XX, 422 p. 561 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Manifolds (Mathematics). -
電子資源:
https://doi.org/10.1007/978-3-030-05213-3
ISBN:
9783030052133
An Introduction to Quantum and Vassiliev Knot Invariants
Jackson, David M.
An Introduction to Quantum and Vassiliev Knot Invariants
[electronic resource] /by David M. Jackson, Iain Moffatt. - 1st ed. 2019. - XX, 422 p. 561 illus.online resource. - CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,1613-5237. - CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,.
Part I Basic Knot Theory -- Knots -- Knot and Link Invariants -- Framed Links -- Braids and the Braid Group -- Part II Quantum Knot Invariants -- R-Matrix Representations of Bn -- Knot Invariants through R-Matrix Representations of Bn -- Operator Invariants -- Ribbon Hopf Algebras -- Reshetikin-Turaev Invariants -- Part III Vassiliev Invarients -- The Fundamentals of Vassiliev Invariants -- Chord Diagrams -- Vassiliev Invariants of Framed Knots -- Jacobi Diagrams -- Lie Algebra Weight Systems -- Part IV The Kontsevich Invariant -- q-tangles -- Jacobi Diagrams on a 1-manifold -- A Construction of the Kontsevich Invariant -- Universality Properties of the Kontsevich Invariant -- Appendix A Background on Modules and Linear Algebra -- Appendix B Rewriting the Definition of Operator Invariants -- Appendix C Computations in Quasi-triangular Hopf Algebras -- Appendix D The Ribbon Hopf Algebra -- Appendix E A Proof of the Invariance of the Reshetikin-Turaev Invariants.
This book provides an accessible introduction to knot theory, focussing on Vassiliev invariants, quantum knot invariants constructed via representations of quantum groups, and how these two apparently distinct theories come together through the Kontsevich invariant. Consisting of four parts, the book opens with an introduction to the fundamentals of knot theory, and to knot invariants such as the Jones polynomial. The second part introduces quantum invariants of knots, working constructively from first principles towards the construction of Reshetikhin-Turaev invariants and a description of how these arise through Drinfeld and Jimbo's quantum groups. Its third part offers an introduction to Vassiliev invariants, providing a careful account of how chord diagrams and Jacobi diagrams arise in the theory, and the role that Lie algebras play. The final part of the book introduces the Konstevich invariant. This is a universal quantum invariant and a universal Vassiliev invariant, and brings together these two seemingly different families of knot invariants. The book provides a detailed account of the construction of the Jones polynomial via the quantum groups attached to sl(2), the Vassiliev weight system arising from sl(2), and how these invariants come together through the Kontsevich invariant.
ISBN: 9783030052133
Standard No.: 10.1007/978-3-030-05213-3doiSubjects--Topical Terms:
1051266
Manifolds (Mathematics).
LC Class. No.: QA613-613.8
Dewey Class. No.: 514.34
An Introduction to Quantum and Vassiliev Knot Invariants
LDR
:03752nam a22004215i 4500
001
1004974
003
DE-He213
005
20200702064810.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783030052133
$9
978-3-030-05213-3
024
7
$a
10.1007/978-3-030-05213-3
$2
doi
035
$a
978-3-030-05213-3
050
4
$a
QA613-613.8
050
4
$a
QA613.6-613.66
072
7
$a
PBMS
$2
bicssc
072
7
$a
MAT038000
$2
bisacsh
072
7
$a
PBMS
$2
thema
072
7
$a
PBPH
$2
thema
082
0 4
$a
514.34
$2
23
100
1
$a
Jackson, David M.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1227407
245
1 3
$a
An Introduction to Quantum and Vassiliev Knot Invariants
$h
[electronic resource] /
$c
by David M. Jackson, Iain Moffatt.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
XX, 422 p. 561 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,
$x
1613-5237
505
0
$a
Part I Basic Knot Theory -- Knots -- Knot and Link Invariants -- Framed Links -- Braids and the Braid Group -- Part II Quantum Knot Invariants -- R-Matrix Representations of Bn -- Knot Invariants through R-Matrix Representations of Bn -- Operator Invariants -- Ribbon Hopf Algebras -- Reshetikin-Turaev Invariants -- Part III Vassiliev Invarients -- The Fundamentals of Vassiliev Invariants -- Chord Diagrams -- Vassiliev Invariants of Framed Knots -- Jacobi Diagrams -- Lie Algebra Weight Systems -- Part IV The Kontsevich Invariant -- q-tangles -- Jacobi Diagrams on a 1-manifold -- A Construction of the Kontsevich Invariant -- Universality Properties of the Kontsevich Invariant -- Appendix A Background on Modules and Linear Algebra -- Appendix B Rewriting the Definition of Operator Invariants -- Appendix C Computations in Quasi-triangular Hopf Algebras -- Appendix D The Ribbon Hopf Algebra -- Appendix E A Proof of the Invariance of the Reshetikin-Turaev Invariants.
520
$a
This book provides an accessible introduction to knot theory, focussing on Vassiliev invariants, quantum knot invariants constructed via representations of quantum groups, and how these two apparently distinct theories come together through the Kontsevich invariant. Consisting of four parts, the book opens with an introduction to the fundamentals of knot theory, and to knot invariants such as the Jones polynomial. The second part introduces quantum invariants of knots, working constructively from first principles towards the construction of Reshetikhin-Turaev invariants and a description of how these arise through Drinfeld and Jimbo's quantum groups. Its third part offers an introduction to Vassiliev invariants, providing a careful account of how chord diagrams and Jacobi diagrams arise in the theory, and the role that Lie algebras play. The final part of the book introduces the Konstevich invariant. This is a universal quantum invariant and a universal Vassiliev invariant, and brings together these two seemingly different families of knot invariants. The book provides a detailed account of the construction of the Jones polynomial via the quantum groups attached to sl(2), the Vassiliev weight system arising from sl(2), and how these invariants come together through the Kontsevich invariant.
650
0
$a
Manifolds (Mathematics).
$3
1051266
650
0
$a
Complex manifolds.
$3
676705
650
0
$a
Nonassociative rings.
$3
1254916
650
0
$a
Rings (Algebra).
$3
685051
650
1 4
$a
Manifolds and Cell Complexes (incl. Diff.Topology).
$3
668590
650
2 4
$a
Non-associative Rings and Algebras.
$3
672285
700
1
$a
Moffatt, Iain.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1077317
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030052126
776
0 8
$i
Printed edition:
$z
9783030052140
830
0
$a
CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,
$x
1613-5237
$3
1266693
856
4 0
$u
https://doi.org/10.1007/978-3-030-05213-3
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入