語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Large Scale Data Analytics
~
Cho, Chung Yik.
Large Scale Data Analytics
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Large Scale Data Analytics/ by Chung Yik Cho, Rong Kun Jason Tan, John A. Leong, Amandeep S. Sidhu.
作者:
Cho, Chung Yik.
其他作者:
Tan, Rong Kun Jason.
面頁冊數:
IX, 89 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Applied mathematics. -
電子資源:
https://doi.org/10.1007/978-3-030-03892-2
ISBN:
9783030038922
Large Scale Data Analytics
Cho, Chung Yik.
Large Scale Data Analytics
[electronic resource] /by Chung Yik Cho, Rong Kun Jason Tan, John A. Leong, Amandeep S. Sidhu. - 1st ed. 2019. - IX, 89 p.online resource. - Data, Semantics and Cloud Computing,8062524-6593 ;. - Data, Semantics and Cloud Computing,759.
Introduction -- Background -- Large Scale Data Analytics -- Query Framework -- Results and Discussion -- Conclusion and Future Works.
This book presents a language integrated query framework for big data. The continuous, rapid growth of data information to volumes of up to terabytes (1,024 gigabytes) or petabytes (1,048,576 gigabytes) means that the need for a system to manage and query information from large scale data sources is becoming more urgent. Currently available frameworks and methodologies are limited in terms of efficiency and querying compatibility between data sources due to the differences in information storage structures. For this research, the authors designed and programmed a framework based on the fundamentals of language integrated query to query existing data sources without the process of data restructuring. A web portal for the framework was also built to enable users to query protein data from the Protein Data Bank (PDB) and implement it on Microsoft Azure, a cloud computing environment known for its reliability, vast computing resources and cost-effectiveness.
ISBN: 9783030038922
Standard No.: 10.1007/978-3-030-03892-2doiSubjects--Topical Terms:
1069907
Applied mathematics.
LC Class. No.: TA329-348
Dewey Class. No.: 519
Large Scale Data Analytics
LDR
:02471nam a22004095i 4500
001
1005041
003
DE-He213
005
20200707013226.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783030038922
$9
978-3-030-03892-2
024
7
$a
10.1007/978-3-030-03892-2
$2
doi
035
$a
978-3-030-03892-2
050
4
$a
TA329-348
050
4
$a
TA640-643
072
7
$a
TBJ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
TBJ
$2
thema
082
0 4
$a
519
$2
23
100
1
$a
Cho, Chung Yik.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1298538
245
1 0
$a
Large Scale Data Analytics
$h
[electronic resource] /
$c
by Chung Yik Cho, Rong Kun Jason Tan, John A. Leong, Amandeep S. Sidhu.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
IX, 89 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Data, Semantics and Cloud Computing,
$x
2524-6593 ;
$v
806
505
0
$a
Introduction -- Background -- Large Scale Data Analytics -- Query Framework -- Results and Discussion -- Conclusion and Future Works.
520
$a
This book presents a language integrated query framework for big data. The continuous, rapid growth of data information to volumes of up to terabytes (1,024 gigabytes) or petabytes (1,048,576 gigabytes) means that the need for a system to manage and query information from large scale data sources is becoming more urgent. Currently available frameworks and methodologies are limited in terms of efficiency and querying compatibility between data sources due to the differences in information storage structures. For this research, the authors designed and programmed a framework based on the fundamentals of language integrated query to query existing data sources without the process of data restructuring. A web portal for the framework was also built to enable users to query protein data from the Protein Data Bank (PDB) and implement it on Microsoft Azure, a cloud computing environment known for its reliability, vast computing resources and cost-effectiveness.
650
0
$a
Applied mathematics.
$3
1069907
650
0
$a
Engineering mathematics.
$3
562757
650
1 4
$a
Mathematical and Computational Engineering.
$3
1139415
700
1
$a
Tan, Rong Kun Jason.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1280375
700
1
$a
Leong, John A.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1280376
700
1
$a
Sidhu, Amandeep S.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1074787
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030038915
776
0 8
$i
Printed edition:
$z
9783030038939
830
0
$a
Data, Semantics and Cloud Computing,
$x
2524-6593 ;
$v
759
$3
1280377
856
4 0
$u
https://doi.org/10.1007/978-3-030-03892-2
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入