Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Advanced Linear Modeling = Statistic...
~
Christensen, Ronald.
Advanced Linear Modeling = Statistical Learning and Dependent Data /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Advanced Linear Modeling/ by Ronald Christensen.
Reminder of title:
Statistical Learning and Dependent Data /
Author:
Christensen, Ronald.
Description:
XXIII, 608 p. 76 illus., 6 illus. in color.online resource. :
Contained By:
Springer Nature eBook
Subject:
Probabilities. -
Online resource:
https://doi.org/10.1007/978-3-030-29164-8
ISBN:
9783030291648
Advanced Linear Modeling = Statistical Learning and Dependent Data /
Christensen, Ronald.
Advanced Linear Modeling
Statistical Learning and Dependent Data /[electronic resource] :by Ronald Christensen. - 3rd ed. 2019. - XXIII, 608 p. 76 illus., 6 illus. in color.online resource. - Springer Texts in Statistics,1431-875X. - Springer Texts in Statistics,.
1. Nonparametric Regression -- 2. Penalized Estimation -- 3. Reproducing Kernel Hilbert Spaces -- 4. Covariance Parameter Estimation -- 5. Mixed Models and Variance Components -- 6. Frequency Analysis of Time Series -- 7. Time Domain Analysis -- 8. Linear Models for Spacial Data: Kriging -- 9. Multivariate Linear Models: General. 10. Multivariate Linear Models: Applications -- 11. Generalized Multivariate Linear Models and Longitudinal Data -- 12. Discrimination and Allocation -- 13. Binary Discrimination and Regression -- 14. Principal Components, Classical Multidimensional Scaling, and Factor Analysis -- A Mathematical Background -- B Best Linear Predictors -- C Residual Maximum Likelihood -- Index -- Author Index.
Now in its third edition, this companion volume to Ronald Christensen’s Plane Answers to Complex Questions uses three fundamental concepts from standard linear model theory—best linear prediction, projections, and Mahalanobis distance— to extend standard linear modeling into the realms of Statistical Learning and Dependent Data. This new edition features a wealth of new and revised content. In Statistical Learning it delves into nonparametric regression, penalized estimation (regularization), reproducing kernel Hilbert spaces, the kernel trick, and support vector machines. For Dependent Data it uses linear model theory to examine general linear models, linear mixed models, time series, spatial data, (generalized) multivariate linear models, discrimination, and dimension reduction. While numerous references to Plane Answers are made throughout the volume, Advanced Linear Modeling can be used on its own given a solid background in linear models. Accompanying R code for the analyses is available online.
ISBN: 9783030291648
Standard No.: 10.1007/978-3-030-29164-8doiSubjects--Topical Terms:
527847
Probabilities.
LC Class. No.: QA273.A1-274.9
Dewey Class. No.: 519.2
Advanced Linear Modeling = Statistical Learning and Dependent Data /
LDR
:03245nam a22004335i 4500
001
1005410
003
DE-He213
005
20200705192930.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783030291648
$9
978-3-030-29164-8
024
7
$a
10.1007/978-3-030-29164-8
$2
doi
035
$a
978-3-030-29164-8
050
4
$a
QA273.A1-274.9
050
4
$a
QA274-274.9
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
PBWL
$2
thema
082
0 4
$a
519.2
$2
23
100
1
$a
Christensen, Ronald.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
788108
245
1 0
$a
Advanced Linear Modeling
$h
[electronic resource] :
$b
Statistical Learning and Dependent Data /
$c
by Ronald Christensen.
250
$a
3rd ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
XXIII, 608 p. 76 illus., 6 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Texts in Statistics,
$x
1431-875X
505
0
$a
1. Nonparametric Regression -- 2. Penalized Estimation -- 3. Reproducing Kernel Hilbert Spaces -- 4. Covariance Parameter Estimation -- 5. Mixed Models and Variance Components -- 6. Frequency Analysis of Time Series -- 7. Time Domain Analysis -- 8. Linear Models for Spacial Data: Kriging -- 9. Multivariate Linear Models: General. 10. Multivariate Linear Models: Applications -- 11. Generalized Multivariate Linear Models and Longitudinal Data -- 12. Discrimination and Allocation -- 13. Binary Discrimination and Regression -- 14. Principal Components, Classical Multidimensional Scaling, and Factor Analysis -- A Mathematical Background -- B Best Linear Predictors -- C Residual Maximum Likelihood -- Index -- Author Index.
520
$a
Now in its third edition, this companion volume to Ronald Christensen’s Plane Answers to Complex Questions uses three fundamental concepts from standard linear model theory—best linear prediction, projections, and Mahalanobis distance— to extend standard linear modeling into the realms of Statistical Learning and Dependent Data. This new edition features a wealth of new and revised content. In Statistical Learning it delves into nonparametric regression, penalized estimation (regularization), reproducing kernel Hilbert spaces, the kernel trick, and support vector machines. For Dependent Data it uses linear model theory to examine general linear models, linear mixed models, time series, spatial data, (generalized) multivariate linear models, discrimination, and dimension reduction. While numerous references to Plane Answers are made throughout the volume, Advanced Linear Modeling can be used on its own given a solid background in linear models. Accompanying R code for the analyses is available online.
650
0
$a
Probabilities.
$3
527847
650
0
$a
Computer mathematics.
$3
1199796
650
0
$a
Statistics .
$3
1253516
650
1 4
$a
Probability Theory and Stochastic Processes.
$3
593945
650
2 4
$a
Computational Mathematics and Numerical Analysis.
$3
669338
650
2 4
$a
Statistical Theory and Methods.
$3
671396
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030291631
776
0 8
$i
Printed edition:
$z
9783030291655
776
0 8
$i
Printed edition:
$z
9783030291662
830
0
$a
Springer Texts in Statistics,
$x
1431-875X
$3
1257998
856
4 0
$u
https://doi.org/10.1007/978-3-030-29164-8
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login