語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Real-Time BCI System Design to Contr...
~
SpringerLink (Online service)
Real-Time BCI System Design to Control Arduino Based Speed Controllable Robot Using EEG
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Real-Time BCI System Design to Control Arduino Based Speed Controllable Robot Using EEG/ by Swagata Das, Devashree Tripathy, Jagdish Lal Raheja.
作者:
Das, Swagata.
其他作者:
Tripathy, Devashree.
面頁冊數:
XXI, 109 p. 75 illus., 62 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Artificial intelligence. -
電子資源:
https://doi.org/10.1007/978-981-13-3098-8
ISBN:
9789811330988
Real-Time BCI System Design to Control Arduino Based Speed Controllable Robot Using EEG
Das, Swagata.
Real-Time BCI System Design to Control Arduino Based Speed Controllable Robot Using EEG
[electronic resource] /by Swagata Das, Devashree Tripathy, Jagdish Lal Raheja. - 1st ed. 2019. - XXI, 109 p. 75 illus., 62 illus. in color.online resource. - SpringerBriefs in Computational Intelligence,2625-3704. - SpringerBriefs in Computational Intelligence,.
Preface -- Introduction -- An insight to the human brain and EEG -- A review on algorithms for EEG-based BCIs30 -- Implications -- Results and Conclusions.
This book discusses the basic requirements and constraints in building a brain–computer interaction system. These include the technical requirements for building the signal processing module and the acquisition module. The major aspects to be considered when designing a signal acquisition module for a brain–computer interaction system are the human brain, types and applications of brain–computer systems, and the basics of EEG (electroencephalogram) recording. The book also compares the algorithms that have been and that can be used to design the signal processing module of brain–computer interfaces, and describes the various EEG-acquisition devices available and compares their features and inadequacies. Further, it examines in detail the use of Emotiv EPOC (an EEG acquisition module developed by Emotiv) to build a complete brain–computer interaction system for driving robots using a neural network classification module.
ISBN: 9789811330988
Standard No.: 10.1007/978-981-13-3098-8doiSubjects--Topical Terms:
559380
Artificial intelligence.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Real-Time BCI System Design to Control Arduino Based Speed Controllable Robot Using EEG
LDR
:02562nam a22003975i 4500
001
1005432
003
DE-He213
005
20200630041035.0
007
cr nn 008mamaa
008
210106s2019 si | s |||| 0|eng d
020
$a
9789811330988
$9
978-981-13-3098-8
024
7
$a
10.1007/978-981-13-3098-8
$2
doi
035
$a
978-981-13-3098-8
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Das, Swagata.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1298882
245
1 0
$a
Real-Time BCI System Design to Control Arduino Based Speed Controllable Robot Using EEG
$h
[electronic resource] /
$c
by Swagata Das, Devashree Tripathy, Jagdish Lal Raheja.
250
$a
1st ed. 2019.
264
1
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
XXI, 109 p. 75 illus., 62 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Computational Intelligence,
$x
2625-3704
505
0
$a
Preface -- Introduction -- An insight to the human brain and EEG -- A review on algorithms for EEG-based BCIs30 -- Implications -- Results and Conclusions.
520
$a
This book discusses the basic requirements and constraints in building a brain–computer interaction system. These include the technical requirements for building the signal processing module and the acquisition module. The major aspects to be considered when designing a signal acquisition module for a brain–computer interaction system are the human brain, types and applications of brain–computer systems, and the basics of EEG (electroencephalogram) recording. The book also compares the algorithms that have been and that can be used to design the signal processing module of brain–computer interfaces, and describes the various EEG-acquisition devices available and compares their features and inadequacies. Further, it examines in detail the use of Emotiv EPOC (an EEG acquisition module developed by Emotiv) to build a complete brain–computer interaction system for driving robots using a neural network classification module.
650
0
$a
Artificial intelligence.
$3
559380
650
1 4
$a
Computational Intelligence.
$3
768837
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Control engineering.
$3
1249728
650
0
$a
Robotics.
$3
561941
650
0
$a
Mechatronics.
$3
559133
650
2 4
$a
Control, Robotics, Mechatronics.
$3
768396
650
2 4
$a
Artificial Intelligence.
$3
646849
700
1
$a
Tripathy, Devashree.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1298883
700
1
$a
Raheja, Jagdish Lal.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1298884
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9789811330971
776
0 8
$i
Printed edition:
$z
9789811330995
830
0
$a
SpringerBriefs in Computational Intelligence,
$x
2625-3704
$3
1254760
856
4 0
$u
https://doi.org/10.1007/978-981-13-3098-8
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入