語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Bayesian Statistics and New Generati...
~
Argiento, Raffaele.
Bayesian Statistics and New Generations = BAYSM 2018, Warwick, UK, July 2-3 Selected Contributions /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Bayesian Statistics and New Generations/ edited by Raffaele Argiento, Daniele Durante, Sara Wade.
其他題名:
BAYSM 2018, Warwick, UK, July 2-3 Selected Contributions /
其他作者:
Argiento, Raffaele.
面頁冊數:
XI, 184 p. 40 illus., 29 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Statistics . -
電子資源:
https://doi.org/10.1007/978-3-030-30611-3
ISBN:
9783030306113
Bayesian Statistics and New Generations = BAYSM 2018, Warwick, UK, July 2-3 Selected Contributions /
Bayesian Statistics and New Generations
BAYSM 2018, Warwick, UK, July 2-3 Selected Contributions /[electronic resource] :edited by Raffaele Argiento, Daniele Durante, Sara Wade. - 1st ed. 2019. - XI, 184 p. 40 illus., 29 illus. in color.online resource. - Springer Proceedings in Mathematics & Statistics,2962194-1009 ;. - Springer Proceedings in Mathematics & Statistics,125.
Part I – Theory and Methods: A. Diana, J. Griffin, and E. Matechou, A Polya Tree Based Model for Unmarked Individuals in an Open Wildlife Population -- S. Haque and K. Mengersen, Bias Estimation and Correction Using Bootstrap Simulation of the Linking Process -- N. Laitonjam and N. Hurley, Non-parametric Overlapping Community Detection -- L. Fee Schneider, T. Staudt, and A. Munk, Posterior Consistency in the Binomial Model with Unknown Parameters: A Numerical Study -- C. Spire and D. Chakrabarty, Learning in the Absence of Training Data - a Galactic Application -- D. Tait and B. Worton, Multiplicative Latent Force Models -- PART II – Computational Statistics: N. Cunningham, J. E. Griffin, D. L. Wild, and A. Lee, particleMDI: A Julia Package for the Integrative Cluster Analysis of Multiple Datasets -- D. Hosszejni and G. Kastner, Approaches Toward the Bayesian Estimation of the Stochastic Volatility Model with Leverage -- B. Karimi and M. Lavielle, Efficient Metropolis-Hastings Sampling for Nonlinear Mixed Effects Models -- G. Kratzer, Reinhard Furrer, and Pittavino Marta. Comparison Between Suitable Priors for Additive Bayesian Networks -- I. Peneva and R. Savage, A Bayesian Nonparametric Model for Integrative Clustering of Omics Data -- I. Schwabe, Bayesian Inference of Interaction Effects in Item-Level Hierarchical Twin Data -- PART III – Applied Statistics: K. Brock, L. Billingham, C. Yap, and G. Middleton, A Phase II Clinical Trial Design for Associated Co-Primary Efficacy and Toxicity Outcomes with Baseline Covariates -- E. Lanzarone, E. Scalco, A. Mastropietro, S. Marzi, and G. Rizzo, A Conditional Autoregressive Model for estimating Slow and Fast Diffusion from Magnetic Resonance Images -- D. Rocha, M. Scotto, C. Pinto, J. Nuno Tavares, and S. Gouveia, Simulation Study of HIV Temporal Patterns Using Bayesian Methodology -- A. Shenvi, J. Smith, R. Walton, and S. Eldridge, Modelling with Non-Stratified Chain Event Graphs -- O. Stevenson and B. Brewer, Modelling Career Trajectories of Cricket Players Using Gaussian Processes -- F. Turner, R. Wilkinson, C. Buck, J. Jones, and L. Sime, Ice Cores and Emulation: Learning More About Past Ice Sheet Shapes.
This book presents a selection of peer-reviewed contributions to the fourth Bayesian Young Statisticians Meeting, BAYSM 2018, held at the University of Warwick on 2-3 July 2018. The meeting provided a valuable opportunity for young researchers, MSc students, PhD students, and postdocs interested in Bayesian statistics to connect with the broader Bayesian community. The proceedings offer cutting-edge papers on a wide range of topics in Bayesian statistics, identify important challenges and investigate promising methodological approaches, while also assessing current methods and stimulating applications. The book is intended for a broad audience of statisticians, and demonstrates how theoretical, methodological, and computational aspects are often combined in the Bayesian framework to successfully tackle complex problems.
ISBN: 9783030306113
Standard No.: 10.1007/978-3-030-30611-3doiSubjects--Topical Terms:
1253516
Statistics .
LC Class. No.: QA276-280
Dewey Class. No.: 519.5
Bayesian Statistics and New Generations = BAYSM 2018, Warwick, UK, July 2-3 Selected Contributions /
LDR
:04557nam a22004095i 4500
001
1005654
003
DE-He213
005
20200706174046.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783030306113
$9
978-3-030-30611-3
024
7
$a
10.1007/978-3-030-30611-3
$2
doi
035
$a
978-3-030-30611-3
050
4
$a
QA276-280
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.5
$2
23
245
1 0
$a
Bayesian Statistics and New Generations
$h
[electronic resource] :
$b
BAYSM 2018, Warwick, UK, July 2-3 Selected Contributions /
$c
edited by Raffaele Argiento, Daniele Durante, Sara Wade.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
XI, 184 p. 40 illus., 29 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Proceedings in Mathematics & Statistics,
$x
2194-1009 ;
$v
296
505
0
$a
Part I – Theory and Methods: A. Diana, J. Griffin, and E. Matechou, A Polya Tree Based Model for Unmarked Individuals in an Open Wildlife Population -- S. Haque and K. Mengersen, Bias Estimation and Correction Using Bootstrap Simulation of the Linking Process -- N. Laitonjam and N. Hurley, Non-parametric Overlapping Community Detection -- L. Fee Schneider, T. Staudt, and A. Munk, Posterior Consistency in the Binomial Model with Unknown Parameters: A Numerical Study -- C. Spire and D. Chakrabarty, Learning in the Absence of Training Data - a Galactic Application -- D. Tait and B. Worton, Multiplicative Latent Force Models -- PART II – Computational Statistics: N. Cunningham, J. E. Griffin, D. L. Wild, and A. Lee, particleMDI: A Julia Package for the Integrative Cluster Analysis of Multiple Datasets -- D. Hosszejni and G. Kastner, Approaches Toward the Bayesian Estimation of the Stochastic Volatility Model with Leverage -- B. Karimi and M. Lavielle, Efficient Metropolis-Hastings Sampling for Nonlinear Mixed Effects Models -- G. Kratzer, Reinhard Furrer, and Pittavino Marta. Comparison Between Suitable Priors for Additive Bayesian Networks -- I. Peneva and R. Savage, A Bayesian Nonparametric Model for Integrative Clustering of Omics Data -- I. Schwabe, Bayesian Inference of Interaction Effects in Item-Level Hierarchical Twin Data -- PART III – Applied Statistics: K. Brock, L. Billingham, C. Yap, and G. Middleton, A Phase II Clinical Trial Design for Associated Co-Primary Efficacy and Toxicity Outcomes with Baseline Covariates -- E. Lanzarone, E. Scalco, A. Mastropietro, S. Marzi, and G. Rizzo, A Conditional Autoregressive Model for estimating Slow and Fast Diffusion from Magnetic Resonance Images -- D. Rocha, M. Scotto, C. Pinto, J. Nuno Tavares, and S. Gouveia, Simulation Study of HIV Temporal Patterns Using Bayesian Methodology -- A. Shenvi, J. Smith, R. Walton, and S. Eldridge, Modelling with Non-Stratified Chain Event Graphs -- O. Stevenson and B. Brewer, Modelling Career Trajectories of Cricket Players Using Gaussian Processes -- F. Turner, R. Wilkinson, C. Buck, J. Jones, and L. Sime, Ice Cores and Emulation: Learning More About Past Ice Sheet Shapes.
520
$a
This book presents a selection of peer-reviewed contributions to the fourth Bayesian Young Statisticians Meeting, BAYSM 2018, held at the University of Warwick on 2-3 July 2018. The meeting provided a valuable opportunity for young researchers, MSc students, PhD students, and postdocs interested in Bayesian statistics to connect with the broader Bayesian community. The proceedings offer cutting-edge papers on a wide range of topics in Bayesian statistics, identify important challenges and investigate promising methodological approaches, while also assessing current methods and stimulating applications. The book is intended for a broad audience of statisticians, and demonstrates how theoretical, methodological, and computational aspects are often combined in the Bayesian framework to successfully tackle complex problems.
650
0
$a
Statistics .
$3
1253516
650
0
$a
Computer simulation.
$3
560190
650
1 4
$a
Statistical Theory and Methods.
$3
671396
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
669775
650
2 4
$a
Statistics for Business, Management, Economics, Finance, Insurance.
$3
1211158
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
670172
650
2 4
$a
Simulation and Modeling.
$3
669249
700
1
$a
Argiento, Raffaele.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1141716
700
1
$a
Durante, Daniele.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1282332
700
1
$a
Wade, Sara.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1299072
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030306106
776
0 8
$i
Printed edition:
$z
9783030306120
776
0 8
$i
Printed edition:
$z
9783030306137
830
0
$a
Springer Proceedings in Mathematics & Statistics,
$x
2194-1009 ;
$v
125
$3
1253690
856
4 0
$u
https://doi.org/10.1007/978-3-030-30611-3
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入