語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Effective Statistical Learning Metho...
~
Trufin, Julien.
Effective Statistical Learning Methods for Actuaries I = GLMs and Extensions /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Effective Statistical Learning Methods for Actuaries I/ by Michel Denuit, Donatien Hainaut, Julien Trufin.
其他題名:
GLMs and Extensions /
作者:
Denuit, Michel.
其他作者:
Hainaut, Donatien.
面頁冊數:
XVI, 441 p. 82 illus., 23 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Actuarial science. -
電子資源:
https://doi.org/10.1007/978-3-030-25820-7
ISBN:
9783030258207
Effective Statistical Learning Methods for Actuaries I = GLMs and Extensions /
Denuit, Michel.
Effective Statistical Learning Methods for Actuaries I
GLMs and Extensions /[electronic resource] :by Michel Denuit, Donatien Hainaut, Julien Trufin. - 1st ed. 2019. - XVI, 441 p. 82 illus., 23 illus. in color.online resource. - Springer Actuarial Lecture Notes,2523-3289. - Springer Actuarial Lecture Notes,.
Preface -- Part I: LOSS MODELS.-1. Insurance Risk Classification.-Exponential Dispersion (ED) Distributions.-3.-Maximum Likelihood Estimation.-Part II LINEAR MODELS.-4. Generalized Linear Models (GLMs) -- 5.-Over-dispersion, credibility adjustments, mixed models, and regularization.-Part III ADDITIVE MODELS -- 6 Generalized Additive Models (GAMs) -- 7. Beyond Mean Modeling: Double GLMs and GAMs for Location, Scale and Shape (GAMLSS) -- Part IV SPECIAL TOPICS -- 8. Some Generalized Non-Linear Models (GNMs) -- 9 Extreme Value Models -- References.
This book summarizes the state of the art in generalized linear models (GLMs) and their various extensions: GAMs, mixed models and credibility, and some nonlinear variants (GNMs). In order to deal with tail events, analytical tools from Extreme Value Theory are presented. Going beyond mean modeling, it considers volatility modeling (double GLMs) and the general modeling of location, scale and shape parameters (GAMLSS). Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and case studies, providing numerical illustrations using the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. This is the first of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently.
ISBN: 9783030258207
Standard No.: 10.1007/978-3-030-25820-7doiSubjects--Topical Terms:
943795
Actuarial science.
LC Class. No.: HG8779-8793
Dewey Class. No.: 368.01
Effective Statistical Learning Methods for Actuaries I = GLMs and Extensions /
LDR
:03116nam a22003975i 4500
001
1006837
003
DE-He213
005
20200701201123.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783030258207
$9
978-3-030-25820-7
024
7
$a
10.1007/978-3-030-25820-7
$2
doi
035
$a
978-3-030-25820-7
050
4
$a
HG8779-8793
072
7
$a
KFFN
$2
bicssc
072
7
$a
BUS033000
$2
bisacsh
072
7
$a
KFFN
$2
thema
082
0 4
$a
368.01
$2
23
100
1
$a
Denuit, Michel.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1300484
245
1 0
$a
Effective Statistical Learning Methods for Actuaries I
$h
[electronic resource] :
$b
GLMs and Extensions /
$c
by Michel Denuit, Donatien Hainaut, Julien Trufin.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
XVI, 441 p. 82 illus., 23 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Actuarial Lecture Notes,
$x
2523-3289
505
0
$a
Preface -- Part I: LOSS MODELS.-1. Insurance Risk Classification.-Exponential Dispersion (ED) Distributions.-3.-Maximum Likelihood Estimation.-Part II LINEAR MODELS.-4. Generalized Linear Models (GLMs) -- 5.-Over-dispersion, credibility adjustments, mixed models, and regularization.-Part III ADDITIVE MODELS -- 6 Generalized Additive Models (GAMs) -- 7. Beyond Mean Modeling: Double GLMs and GAMs for Location, Scale and Shape (GAMLSS) -- Part IV SPECIAL TOPICS -- 8. Some Generalized Non-Linear Models (GNMs) -- 9 Extreme Value Models -- References.
520
$a
This book summarizes the state of the art in generalized linear models (GLMs) and their various extensions: GAMs, mixed models and credibility, and some nonlinear variants (GNMs). In order to deal with tail events, analytical tools from Extreme Value Theory are presented. Going beyond mean modeling, it considers volatility modeling (double GLMs) and the general modeling of location, scale and shape parameters (GAMLSS). Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and case studies, providing numerical illustrations using the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. This is the first of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently.
650
0
$a
Actuarial science.
$3
943795
650
0
$a
Statistics .
$3
1253516
650
1 4
$a
Actuarial Sciences.
$3
884190
650
2 4
$a
Statistics for Business, Management, Economics, Finance, Insurance.
$3
1211158
700
1
$a
Hainaut, Donatien.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1300485
700
1
$a
Trufin, Julien.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1300486
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030258191
776
0 8
$i
Printed edition:
$z
9783030258214
830
0
$a
Springer Actuarial Lecture Notes,
$x
2523-3289
$3
1300487
856
4 0
$u
https://doi.org/10.1007/978-3-030-25820-7
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入