語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Semantic Kriging for Spatio-temporal...
~
Ghosh, Soumya Kanti.
Semantic Kriging for Spatio-temporal Prediction
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Semantic Kriging for Spatio-temporal Prediction/ by Shrutilipi Bhattacharjee, Soumya Kanti Ghosh, Jia Chen.
作者:
Bhattacharjee, Shrutilipi.
其他作者:
Ghosh, Soumya Kanti.
面頁冊數:
XXV, 127 p. 92 illus., 76 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computational intelligence. -
電子資源:
https://doi.org/10.1007/978-981-13-8664-0
ISBN:
9789811386640
Semantic Kriging for Spatio-temporal Prediction
Bhattacharjee, Shrutilipi.
Semantic Kriging for Spatio-temporal Prediction
[electronic resource] /by Shrutilipi Bhattacharjee, Soumya Kanti Ghosh, Jia Chen. - 1st ed. 2019. - XXV, 127 p. 92 illus., 76 illus. in color.online resource. - Studies in Computational Intelligence,8391860-949X ;. - Studies in Computational Intelligence,564.
Chapter 1. Introduction -- Chapter 2. Spatial Interpolation -- Chapter 3. Spatial Semantic Kriging -- Chapter 4. Fuzzy Bayesian Semantic Kriging -- Chapter 5. Spatio-temporal Reverse Semantic Kriging -- Chapter 6. Summary and Future Research.
This book identifies the need for modeling auxiliary knowledge of the terrain to enhance the prediction accuracy of meteorological parameters. The spatial and spatio-temporal prediction of these parameters are important for the scientific community, and the semantic kriging (SemK) and its variants facilitate different types of prediction and forecasting, such as spatial and spatio-temporal, a-priori and a-posterior, univariate and multivariate. As such, the book also covers the process of deriving the meteorological parameters from raw satellite remote sensing imagery, and helps understanding different prediction method categories and the relation between spatial interpolation methods and other prediction methods. The book is a valuable resource for researchers working in the area of prediction of meteorological parameters, semantic analysis (ontology-based reasoning) of the terrain, and improving predictions using auxiliary knowledge of the terrain.
ISBN: 9789811386640
Standard No.: 10.1007/978-981-13-8664-0doiSubjects--Topical Terms:
568984
Computational intelligence.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Semantic Kriging for Spatio-temporal Prediction
LDR
:02681nam a22004095i 4500
001
1008040
003
DE-He213
005
20200701134338.0
007
cr nn 008mamaa
008
210106s2019 si | s |||| 0|eng d
020
$a
9789811386640
$9
978-981-13-8664-0
024
7
$a
10.1007/978-981-13-8664-0
$2
doi
035
$a
978-981-13-8664-0
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Bhattacharjee, Shrutilipi.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1228349
245
1 0
$a
Semantic Kriging for Spatio-temporal Prediction
$h
[electronic resource] /
$c
by Shrutilipi Bhattacharjee, Soumya Kanti Ghosh, Jia Chen.
250
$a
1st ed. 2019.
264
1
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
XXV, 127 p. 92 illus., 76 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
839
505
0
$a
Chapter 1. Introduction -- Chapter 2. Spatial Interpolation -- Chapter 3. Spatial Semantic Kriging -- Chapter 4. Fuzzy Bayesian Semantic Kriging -- Chapter 5. Spatio-temporal Reverse Semantic Kriging -- Chapter 6. Summary and Future Research.
520
$a
This book identifies the need for modeling auxiliary knowledge of the terrain to enhance the prediction accuracy of meteorological parameters. The spatial and spatio-temporal prediction of these parameters are important for the scientific community, and the semantic kriging (SemK) and its variants facilitate different types of prediction and forecasting, such as spatial and spatio-temporal, a-priori and a-posterior, univariate and multivariate. As such, the book also covers the process of deriving the meteorological parameters from raw satellite remote sensing imagery, and helps understanding different prediction method categories and the relation between spatial interpolation methods and other prediction methods. The book is a valuable resource for researchers working in the area of prediction of meteorological parameters, semantic analysis (ontology-based reasoning) of the terrain, and improving predictions using auxiliary knowledge of the terrain.
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Remote sensing.
$3
557272
650
0
$a
Artificial intelligence.
$3
559380
650
1 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Remote Sensing/Photogrammetry.
$3
670396
650
2 4
$a
Artificial Intelligence.
$3
646849
700
1
$a
Ghosh, Soumya Kanti.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1228350
700
1
$a
Chen, Jia.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
815847
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9789811386633
776
0 8
$i
Printed edition:
$z
9789811386657
776
0 8
$i
Printed edition:
$z
9789811386664
830
0
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
564
$3
1253640
856
4 0
$u
https://doi.org/10.1007/978-981-13-8664-0
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入