Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Semantic Kriging for Spatio-temporal...
~
Ghosh, Soumya Kanti.
Semantic Kriging for Spatio-temporal Prediction
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Semantic Kriging for Spatio-temporal Prediction/ by Shrutilipi Bhattacharjee, Soumya Kanti Ghosh, Jia Chen.
Author:
Bhattacharjee, Shrutilipi.
other author:
Ghosh, Soumya Kanti.
Description:
XXV, 127 p. 92 illus., 76 illus. in color.online resource. :
Contained By:
Springer Nature eBook
Subject:
Computational intelligence. -
Online resource:
https://doi.org/10.1007/978-981-13-8664-0
ISBN:
9789811386640
Semantic Kriging for Spatio-temporal Prediction
Bhattacharjee, Shrutilipi.
Semantic Kriging for Spatio-temporal Prediction
[electronic resource] /by Shrutilipi Bhattacharjee, Soumya Kanti Ghosh, Jia Chen. - 1st ed. 2019. - XXV, 127 p. 92 illus., 76 illus. in color.online resource. - Studies in Computational Intelligence,8391860-949X ;. - Studies in Computational Intelligence,564.
Chapter 1. Introduction -- Chapter 2. Spatial Interpolation -- Chapter 3. Spatial Semantic Kriging -- Chapter 4. Fuzzy Bayesian Semantic Kriging -- Chapter 5. Spatio-temporal Reverse Semantic Kriging -- Chapter 6. Summary and Future Research.
This book identifies the need for modeling auxiliary knowledge of the terrain to enhance the prediction accuracy of meteorological parameters. The spatial and spatio-temporal prediction of these parameters are important for the scientific community, and the semantic kriging (SemK) and its variants facilitate different types of prediction and forecasting, such as spatial and spatio-temporal, a-priori and a-posterior, univariate and multivariate. As such, the book also covers the process of deriving the meteorological parameters from raw satellite remote sensing imagery, and helps understanding different prediction method categories and the relation between spatial interpolation methods and other prediction methods. The book is a valuable resource for researchers working in the area of prediction of meteorological parameters, semantic analysis (ontology-based reasoning) of the terrain, and improving predictions using auxiliary knowledge of the terrain.
ISBN: 9789811386640
Standard No.: 10.1007/978-981-13-8664-0doiSubjects--Topical Terms:
568984
Computational intelligence.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Semantic Kriging for Spatio-temporal Prediction
LDR
:02681nam a22004095i 4500
001
1008040
003
DE-He213
005
20200701134338.0
007
cr nn 008mamaa
008
210106s2019 si | s |||| 0|eng d
020
$a
9789811386640
$9
978-981-13-8664-0
024
7
$a
10.1007/978-981-13-8664-0
$2
doi
035
$a
978-981-13-8664-0
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Bhattacharjee, Shrutilipi.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1228349
245
1 0
$a
Semantic Kriging for Spatio-temporal Prediction
$h
[electronic resource] /
$c
by Shrutilipi Bhattacharjee, Soumya Kanti Ghosh, Jia Chen.
250
$a
1st ed. 2019.
264
1
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
XXV, 127 p. 92 illus., 76 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
839
505
0
$a
Chapter 1. Introduction -- Chapter 2. Spatial Interpolation -- Chapter 3. Spatial Semantic Kriging -- Chapter 4. Fuzzy Bayesian Semantic Kriging -- Chapter 5. Spatio-temporal Reverse Semantic Kriging -- Chapter 6. Summary and Future Research.
520
$a
This book identifies the need for modeling auxiliary knowledge of the terrain to enhance the prediction accuracy of meteorological parameters. The spatial and spatio-temporal prediction of these parameters are important for the scientific community, and the semantic kriging (SemK) and its variants facilitate different types of prediction and forecasting, such as spatial and spatio-temporal, a-priori and a-posterior, univariate and multivariate. As such, the book also covers the process of deriving the meteorological parameters from raw satellite remote sensing imagery, and helps understanding different prediction method categories and the relation between spatial interpolation methods and other prediction methods. The book is a valuable resource for researchers working in the area of prediction of meteorological parameters, semantic analysis (ontology-based reasoning) of the terrain, and improving predictions using auxiliary knowledge of the terrain.
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Remote sensing.
$3
557272
650
0
$a
Artificial intelligence.
$3
559380
650
1 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Remote Sensing/Photogrammetry.
$3
670396
650
2 4
$a
Artificial Intelligence.
$3
646849
700
1
$a
Ghosh, Soumya Kanti.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1228350
700
1
$a
Chen, Jia.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
815847
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9789811386633
776
0 8
$i
Printed edition:
$z
9789811386657
776
0 8
$i
Printed edition:
$z
9789811386664
830
0
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
564
$3
1253640
856
4 0
$u
https://doi.org/10.1007/978-981-13-8664-0
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login