語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Learn RStudio IDE = Quick, Effective...
~
SpringerLink (Online service)
Learn RStudio IDE = Quick, Effective, and Productive Data Science /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Learn RStudio IDE/ by Matthew Campbell.
其他題名:
Quick, Effective, and Productive Data Science /
作者:
Campbell, Matthew.
面頁冊數:
IX, 153 p. 88 illus., 6 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Programming languages (Electronic computers). -
電子資源:
https://doi.org/10.1007/978-1-4842-4511-8
ISBN:
9781484245118
Learn RStudio IDE = Quick, Effective, and Productive Data Science /
Campbell, Matthew.
Learn RStudio IDE
Quick, Effective, and Productive Data Science /[electronic resource] :by Matthew Campbell. - 1st ed. 2019. - IX, 153 p. 88 illus., 6 illus. in color.online resource.
1. Installing RStudio -- 2. Hello World -- 3. RStudio Views -- 4. RStudio Projects -- 5. Repeatable Analysis -- 6. Essential R Packages: Tidyverse -- 7. Data Visualization -- 8. R Markdown -- 9. Shiny R Dashboards -- 10. Custom R Packages -- 11. Code Tools -- 12. R Programming.
Discover how to use the popular RStudio IDE as a professional tool that includes code refactoring support, debugging, and Git version control integration. This book gives you a tour of RStudio and shows you how it helps you do exploratory data analysis; build data visualizations with ggplot; and create custom R packages and web-based interactive visualizations with Shiny. In addition, you will cover common data analysis tasks including importing data from diverse sources such as SAS files, CSV files, and JSON. You will map out the features in RStudio so that you will be able to customize RStudio to fit your own style of coding. Finally, you will see how to save a ton of time by adopting best practices and using packages to extend RStudio. Learn RStudio IDE is a quick, no-nonsense tutorial of RStudio that will give you a head start to develop the insights you need in your data science projects. You will: Quickly, effectively, and productively use RStudio IDE for building data science applications Install RStudio and program your first Hello World application Adopt the RStudio workflow Make your code reusable using RStudio Use RStudio and Shiny for data visualization projects Debug your code with RStudio Import CSV, SPSS, SAS, JSON, and other data.
ISBN: 9781484245118
Standard No.: 10.1007/978-1-4842-4511-8doiSubjects--Topical Terms:
1127615
Programming languages (Electronic computers).
LC Class. No.: QA76.7-76.73
Dewey Class. No.: 005.13
Learn RStudio IDE = Quick, Effective, and Productive Data Science /
LDR
:02924nam a22004095i 4500
001
1008080
003
DE-He213
005
20200703075632.0
007
cr nn 008mamaa
008
210106s2019 xxu| s |||| 0|eng d
020
$a
9781484245118
$9
978-1-4842-4511-8
024
7
$a
10.1007/978-1-4842-4511-8
$2
doi
035
$a
978-1-4842-4511-8
050
4
$a
QA76.7-76.73
050
4
$a
QA76.76.C65
072
7
$a
UMX
$2
bicssc
072
7
$a
COM051010
$2
bisacsh
072
7
$a
UMX
$2
thema
072
7
$a
UMC
$2
thema
082
0 4
$a
005.13
$2
23
100
1
$a
Campbell, Matthew.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
686646
245
1 0
$a
Learn RStudio IDE
$h
[electronic resource] :
$b
Quick, Effective, and Productive Data Science /
$c
by Matthew Campbell.
250
$a
1st ed. 2019.
264
1
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2019.
300
$a
IX, 153 p. 88 illus., 6 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
1. Installing RStudio -- 2. Hello World -- 3. RStudio Views -- 4. RStudio Projects -- 5. Repeatable Analysis -- 6. Essential R Packages: Tidyverse -- 7. Data Visualization -- 8. R Markdown -- 9. Shiny R Dashboards -- 10. Custom R Packages -- 11. Code Tools -- 12. R Programming.
520
$a
Discover how to use the popular RStudio IDE as a professional tool that includes code refactoring support, debugging, and Git version control integration. This book gives you a tour of RStudio and shows you how it helps you do exploratory data analysis; build data visualizations with ggplot; and create custom R packages and web-based interactive visualizations with Shiny. In addition, you will cover common data analysis tasks including importing data from diverse sources such as SAS files, CSV files, and JSON. You will map out the features in RStudio so that you will be able to customize RStudio to fit your own style of coding. Finally, you will see how to save a ton of time by adopting best practices and using packages to extend RStudio. Learn RStudio IDE is a quick, no-nonsense tutorial of RStudio that will give you a head start to develop the insights you need in your data science projects. You will: Quickly, effectively, and productively use RStudio IDE for building data science applications Install RStudio and program your first Hello World application Adopt the RStudio workflow Make your code reusable using RStudio Use RStudio and Shiny for data visualization projects Debug your code with RStudio Import CSV, SPSS, SAS, JSON, and other data.
650
0
$a
Programming languages (Electronic computers).
$3
1127615
650
0
$a
Computer programming.
$3
527822
650
0
$a
Engineering—Data processing.
$3
1297966
650
0
$a
Data mining.
$3
528622
650
0
$a
Mathematical statistics.
$3
527941
650
1 4
$a
Programming Languages, Compilers, Interpreters.
$3
669782
650
2 4
$a
Programming Techniques.
$3
669781
650
2 4
$a
Data Engineering.
$3
1226308
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Probability and Statistics in Computer Science.
$3
669886
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9781484245101
776
0 8
$i
Printed edition:
$z
9781484245125
856
4 0
$u
https://doi.org/10.1007/978-1-4842-4511-8
912
$a
ZDB-2-CWD
912
$a
ZDB-2-SXPC
950
$a
Professional and Applied Computing (SpringerNature-12059)
950
$a
Professional and Applied Computing (R0) (SpringerNature-43716)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入