語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The IoT Physical Layer = Design and ...
~
Elfadel, Ibrahim (Abe) M.
The IoT Physical Layer = Design and Implementation /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
The IoT Physical Layer/ edited by Ibrahim (Abe) M. Elfadel, Mohammed Ismail.
其他題名:
Design and Implementation /
其他作者:
Elfadel, Ibrahim (Abe) M.
面頁冊數:
XXXIII, 382 p. 259 illus., 229 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Electronic circuits. -
電子資源:
https://doi.org/10.1007/978-3-319-93100-5
ISBN:
9783319931005
The IoT Physical Layer = Design and Implementation /
The IoT Physical Layer
Design and Implementation /[electronic resource] :edited by Ibrahim (Abe) M. Elfadel, Mohammed Ismail. - 1st ed. 2019. - XXXIII, 382 p. 259 illus., 229 illus. in color.online resource.
Part 1. Advanced Materials and Sensors -- Reduced Graphene Oxide for the Design of Electrocardiogram Sensors: Current Status and Perspectives -- A Preliminary Evaluation of Continuous, Shoe-IntegratedWeight Measurements for Heart Failure Patients -- ALD Al-doped ZnO Thin Film as Semiconductor and Piezoelectric Material: Process Synthesis -- ALD Al-doped ZnO Thin Film as Semiconductor and Piezoelectric Material: Characterization -- ALD Al doped ZnO Thin Film as Semiconductor and Piezoelectric Material: Transistors and Sensors -- Lab-on-Chip Silicon Photonics Sensor -- Part 2. Architectures and Circuits -- Design Challenges in Wireless Sensors for Dental Applications -- Energy-Efficient Body Area Network Transceiver Using Body Coupled Communication -- Ultra-low power ECG Processor for IoT SOCs -- Time-delay Array Beamforming for Millimeter Wave IoT Systems -- Part 3. Algorithms and Protocols -- Nature-Inspired Optimization in the Era of IoT: Particle Swarm Optimization (PSO) Applied to Indoor Distributed Antenna Systems (I-DAS) -- Low-power, Dynamic-data-rate Protocol for IoT Communication -- Efficient Algorithm for VT/VF Prediction for IoT SoCs -- MSER-in-chip: An Efficient Vision Tool for IoT Devices -- Part 4. Power Management -- A Low Power, High Resolution ZCS Control for Inductor-based Converters -- Power Management Unit for IoT -- Macromodeling of Microbatteries for IoT Micro-power Source Integration -- Part 5. Systems and Security -- Self-Powered SoC Platform forWearable Health Care -- Toward An Integrated, Low-power Platform for Continuous Congestive Heart-failure Monitoring -- Hardware Security and Trust: Logic Locking as a Design-for-Trust Solution.
This book documents some of the most recent advances on the physical layer of the Internet of Things (IoT), including sensors, circuits, and systems. The application area selected for illustrating these advances is that of autonomous, wearable systems for real-time medical diagnosis. The book is unique in that it adopts a holistic view of such systems and includes not only the sensor and processing subsystems, but also the power, communication, and security subsystems. Particular attention is paid to the integration of these IoT subsystems as well as the prototyping platforms needed for achieving such integration. Other unique features include the discussion of energy-harvesting subsystems to achieve full energy autonomy and the consideration of hardware security as a requirement for the integrity of the IoT physical layer. One unifying thread of the various designs considered in this book is that they have all been fabricated and tested in an advanced, low-power CMOS process, namely GLOBALFOUNDRIES 65nm CMOS LPe. In summary, this volume Provides up-to-date information on the architecture, design, implementation and testing of IoT sensors, circuits, and systems; Discusses communication transceivers and protocols for IoT systems dedicated to medical diagnosis; Discusses energy autonomy, power management, and hardware security the IoT physical layer; Enables the design and silicon implementation of systems-on-chip to medical and surveillance applications; Includes coverage of FPGA prototyping platforms for IoT nodes.
ISBN: 9783319931005
Standard No.: 10.1007/978-3-319-93100-5doiSubjects--Topical Terms:
563332
Electronic circuits.
LC Class. No.: TK7888.4
Dewey Class. No.: 621.3815
The IoT Physical Layer = Design and Implementation /
LDR
:04597nam a22003975i 4500
001
1008260
003
DE-He213
005
20200702084644.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783319931005
$9
978-3-319-93100-5
024
7
$a
10.1007/978-3-319-93100-5
$2
doi
035
$a
978-3-319-93100-5
050
4
$a
TK7888.4
072
7
$a
TJFC
$2
bicssc
072
7
$a
TEC008010
$2
bisacsh
072
7
$a
TJFC
$2
thema
082
0 4
$a
621.3815
$2
23
245
1 4
$a
The IoT Physical Layer
$h
[electronic resource] :
$b
Design and Implementation /
$c
edited by Ibrahim (Abe) M. Elfadel, Mohammed Ismail.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
XXXIII, 382 p. 259 illus., 229 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Part 1. Advanced Materials and Sensors -- Reduced Graphene Oxide for the Design of Electrocardiogram Sensors: Current Status and Perspectives -- A Preliminary Evaluation of Continuous, Shoe-IntegratedWeight Measurements for Heart Failure Patients -- ALD Al-doped ZnO Thin Film as Semiconductor and Piezoelectric Material: Process Synthesis -- ALD Al-doped ZnO Thin Film as Semiconductor and Piezoelectric Material: Characterization -- ALD Al doped ZnO Thin Film as Semiconductor and Piezoelectric Material: Transistors and Sensors -- Lab-on-Chip Silicon Photonics Sensor -- Part 2. Architectures and Circuits -- Design Challenges in Wireless Sensors for Dental Applications -- Energy-Efficient Body Area Network Transceiver Using Body Coupled Communication -- Ultra-low power ECG Processor for IoT SOCs -- Time-delay Array Beamforming for Millimeter Wave IoT Systems -- Part 3. Algorithms and Protocols -- Nature-Inspired Optimization in the Era of IoT: Particle Swarm Optimization (PSO) Applied to Indoor Distributed Antenna Systems (I-DAS) -- Low-power, Dynamic-data-rate Protocol for IoT Communication -- Efficient Algorithm for VT/VF Prediction for IoT SoCs -- MSER-in-chip: An Efficient Vision Tool for IoT Devices -- Part 4. Power Management -- A Low Power, High Resolution ZCS Control for Inductor-based Converters -- Power Management Unit for IoT -- Macromodeling of Microbatteries for IoT Micro-power Source Integration -- Part 5. Systems and Security -- Self-Powered SoC Platform forWearable Health Care -- Toward An Integrated, Low-power Platform for Continuous Congestive Heart-failure Monitoring -- Hardware Security and Trust: Logic Locking as a Design-for-Trust Solution.
520
$a
This book documents some of the most recent advances on the physical layer of the Internet of Things (IoT), including sensors, circuits, and systems. The application area selected for illustrating these advances is that of autonomous, wearable systems for real-time medical diagnosis. The book is unique in that it adopts a holistic view of such systems and includes not only the sensor and processing subsystems, but also the power, communication, and security subsystems. Particular attention is paid to the integration of these IoT subsystems as well as the prototyping platforms needed for achieving such integration. Other unique features include the discussion of energy-harvesting subsystems to achieve full energy autonomy and the consideration of hardware security as a requirement for the integrity of the IoT physical layer. One unifying thread of the various designs considered in this book is that they have all been fabricated and tested in an advanced, low-power CMOS process, namely GLOBALFOUNDRIES 65nm CMOS LPe. In summary, this volume Provides up-to-date information on the architecture, design, implementation and testing of IoT sensors, circuits, and systems; Discusses communication transceivers and protocols for IoT systems dedicated to medical diagnosis; Discusses energy autonomy, power management, and hardware security the IoT physical layer; Enables the design and silicon implementation of systems-on-chip to medical and surveillance applications; Includes coverage of FPGA prototyping platforms for IoT nodes.
650
0
$a
Electronic circuits.
$3
563332
650
0
$a
Signal processing.
$3
561459
650
0
$a
Image processing.
$3
557495
650
0
$a
Speech processing systems.
$3
564428
650
0
$a
Electronics.
$3
596389
650
0
$a
Microelectronics.
$3
554956
650
1 4
$a
Circuits and Systems.
$3
670901
650
2 4
$a
Signal, Image and Speech Processing.
$3
670837
650
2 4
$a
Electronics and Microelectronics, Instrumentation.
$3
670219
700
1
$a
Elfadel, Ibrahim (Abe) M.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1269077
700
1
$a
Ismail, Mohammed.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
679504
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319930992
776
0 8
$i
Printed edition:
$z
9783319931012
776
0 8
$i
Printed edition:
$z
9783030065881
856
4 0
$u
https://doi.org/10.1007/978-3-319-93100-5
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入