語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Advanced R Statistical Programming a...
~
SpringerLink (Online service)
Advanced R Statistical Programming and Data Models = Analysis, Machine Learning, and Visualization /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Advanced R Statistical Programming and Data Models/ by Matt Wiley, Joshua F. Wiley.
其他題名:
Analysis, Machine Learning, and Visualization /
作者:
Wiley, Matt.
其他作者:
Wiley, Joshua F.
面頁冊數:
XX, 638 p. 207 illus., 127 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Programming languages (Electronic computers). -
電子資源:
https://doi.org/10.1007/978-1-4842-2872-2
ISBN:
9781484228722
Advanced R Statistical Programming and Data Models = Analysis, Machine Learning, and Visualization /
Wiley, Matt.
Advanced R Statistical Programming and Data Models
Analysis, Machine Learning, and Visualization /[electronic resource] :by Matt Wiley, Joshua F. Wiley. - 1st ed. 2019. - XX, 638 p. 207 illus., 127 illus. in color.online resource.
1 Univariate Data Visualization -- 2 Multivariate Data Visualization -- 3 Generalized Linear Models 1 -- 4 Generalized Linear Models 2 -- 5 Generalized Additive Models -- 6 Machine Learning: Introduction -- 7 Machine Learning: Unsupervised -- 8 Machine Learning: Supervised -- 9 Missing Data -- 10 Generalized Linear Mixed Models: Introduction -- 11 Generalized Linear Mixed Models: Linear -- 12 Generalized Linear Mixed Models: Advanced -- 13 Modeling IIV -- Bibliography.
Carry out a variety of advanced statistical analyses including generalized additive models, mixed effects models, multiple imputation, machine learning, and missing data techniques using R. Each chapter starts with conceptual background information about the techniques, includes multiple examples using R to achieve results, and concludes with a case study. Written by Matt and Joshua F. Wiley, Advanced R Statistical Programming and Data Models shows you how to conduct data analysis using the popular R language. You’ll delve into the preconditions or hypothesis for various statistical tests and techniques and work through concrete examples using R for a variety of these next-level analytics. This is a must-have guide and reference on using and programming with the R language. You will: Conduct advanced analyses in R including: generalized linear models, generalized additive models, mixed effects models, machine learning, and parallel processing Carry out regression modeling using R data visualization, linear and advanced regression, additive models, survival / time to event analysis Handle machine learning using R including parallel processing, dimension reduction, and feature selection and classification Address missing data using multiple imputation in R Work on factor analysis, generalized linear mixed models, and modeling intraindividual variability .
ISBN: 9781484228722
Standard No.: 10.1007/978-1-4842-2872-2doiSubjects--Topical Terms:
1127615
Programming languages (Electronic computers).
LC Class. No.: QA76.7-76.73
Dewey Class. No.: 005.13
Advanced R Statistical Programming and Data Models = Analysis, Machine Learning, and Visualization /
LDR
:03277nam a22004095i 4500
001
1009030
003
DE-He213
005
20200702141626.0
007
cr nn 008mamaa
008
210106s2019 xxu| s |||| 0|eng d
020
$a
9781484228722
$9
978-1-4842-2872-2
024
7
$a
10.1007/978-1-4842-2872-2
$2
doi
035
$a
978-1-4842-2872-2
050
4
$a
QA76.7-76.73
050
4
$a
QA76.76.C65
072
7
$a
UMX
$2
bicssc
072
7
$a
COM051010
$2
bisacsh
072
7
$a
UMX
$2
thema
072
7
$a
UMC
$2
thema
082
0 4
$a
005.13
$2
23
100
1
$a
Wiley, Matt.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1115958
245
1 0
$a
Advanced R Statistical Programming and Data Models
$h
[electronic resource] :
$b
Analysis, Machine Learning, and Visualization /
$c
by Matt Wiley, Joshua F. Wiley.
250
$a
1st ed. 2019.
264
1
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2019.
300
$a
XX, 638 p. 207 illus., 127 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
1 Univariate Data Visualization -- 2 Multivariate Data Visualization -- 3 Generalized Linear Models 1 -- 4 Generalized Linear Models 2 -- 5 Generalized Additive Models -- 6 Machine Learning: Introduction -- 7 Machine Learning: Unsupervised -- 8 Machine Learning: Supervised -- 9 Missing Data -- 10 Generalized Linear Mixed Models: Introduction -- 11 Generalized Linear Mixed Models: Linear -- 12 Generalized Linear Mixed Models: Advanced -- 13 Modeling IIV -- Bibliography.
520
$a
Carry out a variety of advanced statistical analyses including generalized additive models, mixed effects models, multiple imputation, machine learning, and missing data techniques using R. Each chapter starts with conceptual background information about the techniques, includes multiple examples using R to achieve results, and concludes with a case study. Written by Matt and Joshua F. Wiley, Advanced R Statistical Programming and Data Models shows you how to conduct data analysis using the popular R language. You’ll delve into the preconditions or hypothesis for various statistical tests and techniques and work through concrete examples using R for a variety of these next-level analytics. This is a must-have guide and reference on using and programming with the R language. You will: Conduct advanced analyses in R including: generalized linear models, generalized additive models, mixed effects models, machine learning, and parallel processing Carry out regression modeling using R data visualization, linear and advanced regression, additive models, survival / time to event analysis Handle machine learning using R including parallel processing, dimension reduction, and feature selection and classification Address missing data using multiple imputation in R Work on factor analysis, generalized linear mixed models, and modeling intraindividual variability .
650
0
$a
Programming languages (Electronic computers).
$3
1127615
650
0
$a
Computer programming.
$3
527822
650
0
$a
Mathematical statistics.
$3
527941
650
1 4
$a
Programming Languages, Compilers, Interpreters.
$3
669782
650
2 4
$a
Programming Techniques.
$3
669781
650
2 4
$a
Probability and Statistics in Computer Science.
$3
669886
700
1
$a
Wiley, Joshua F.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1070173
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9781484228715
776
0 8
$i
Printed edition:
$z
9781484228739
856
4 0
$u
https://doi.org/10.1007/978-1-4842-2872-2
912
$a
ZDB-2-CWD
912
$a
ZDB-2-SXPC
950
$a
Professional and Applied Computing (SpringerNature-12059)
950
$a
Professional and Applied Computing (R0) (SpringerNature-43716)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入