語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Effective Statistical Learning Metho...
~
Trufin, Julien.
Effective Statistical Learning Methods for Actuaries III = Neural Networks and Extensions /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Effective Statistical Learning Methods for Actuaries III/ by Michel Denuit, Donatien Hainaut, Julien Trufin.
其他題名:
Neural Networks and Extensions /
作者:
Denuit, Michel.
其他作者:
Hainaut, Donatien.
面頁冊數:
XIII, 250 p. 78 illus., 75 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Actuarial science. -
電子資源:
https://doi.org/10.1007/978-3-030-25827-6
ISBN:
9783030258276
Effective Statistical Learning Methods for Actuaries III = Neural Networks and Extensions /
Denuit, Michel.
Effective Statistical Learning Methods for Actuaries III
Neural Networks and Extensions /[electronic resource] :by Michel Denuit, Donatien Hainaut, Julien Trufin. - 1st ed. 2019. - XIII, 250 p. 78 illus., 75 illus. in color.online resource. - Springer Actuarial Lecture Notes,2523-3289. - Springer Actuarial Lecture Notes,.
Preface. - Feed-forward Neural Networks. - Byesian Neural Networks and GLM. - Deep Neural Networks -- Dimension-Reduction with Forward Neural Nets Applied to Mortality. - Self-organizing Maps and k-means clusterin in non Life Insurance. - Ensemble of Neural Networks -- Gradient Boosting with Neural Networks. - Time Series Modelling with Neural Networks -- References.
Artificial intelligence and neural networks offer a powerful alternative to statistical methods for analyzing data. This book reviews some of the most recent developments in neural networks, with a focus on applications in actuarial sciences and finance. The third volume of the trilogy simultaneously introduces the relevant tools for developing and analyzing neural networks, in a style that is mathematically rigorous and yet accessible. The authors proceed by successive generalizations, requiring of the reader only a basic knowledge of statistics. Various topics are covered from feed-forward networks to deep learning, such as Bayesian learning, boosting methods and Long Short Term Memory models. All methods are applied to claims, mortality or time-series forecasting. This book is written for masters students in the actuarial sciences and for actuaries wishing to update their skills in machine learning. .
ISBN: 9783030258276
Standard No.: 10.1007/978-3-030-25827-6doiSubjects--Topical Terms:
943795
Actuarial science.
LC Class. No.: HG8779-8793
Dewey Class. No.: 368.01
Effective Statistical Learning Methods for Actuaries III = Neural Networks and Extensions /
LDR
:02735nam a22003975i 4500
001
1009878
003
DE-He213
005
20200701050518.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783030258276
$9
978-3-030-25827-6
024
7
$a
10.1007/978-3-030-25827-6
$2
doi
035
$a
978-3-030-25827-6
050
4
$a
HG8779-8793
072
7
$a
KFFN
$2
bicssc
072
7
$a
BUS033000
$2
bisacsh
072
7
$a
KFFN
$2
thema
082
0 4
$a
368.01
$2
23
100
1
$a
Denuit, Michel.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1300484
245
1 0
$a
Effective Statistical Learning Methods for Actuaries III
$h
[electronic resource] :
$b
Neural Networks and Extensions /
$c
by Michel Denuit, Donatien Hainaut, Julien Trufin.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
XIII, 250 p. 78 illus., 75 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Actuarial Lecture Notes,
$x
2523-3289
505
0
$a
Preface. - Feed-forward Neural Networks. - Byesian Neural Networks and GLM. - Deep Neural Networks -- Dimension-Reduction with Forward Neural Nets Applied to Mortality. - Self-organizing Maps and k-means clusterin in non Life Insurance. - Ensemble of Neural Networks -- Gradient Boosting with Neural Networks. - Time Series Modelling with Neural Networks -- References.
520
$a
Artificial intelligence and neural networks offer a powerful alternative to statistical methods for analyzing data. This book reviews some of the most recent developments in neural networks, with a focus on applications in actuarial sciences and finance. The third volume of the trilogy simultaneously introduces the relevant tools for developing and analyzing neural networks, in a style that is mathematically rigorous and yet accessible. The authors proceed by successive generalizations, requiring of the reader only a basic knowledge of statistics. Various topics are covered from feed-forward networks to deep learning, such as Bayesian learning, boosting methods and Long Short Term Memory models. All methods are applied to claims, mortality or time-series forecasting. This book is written for masters students in the actuarial sciences and for actuaries wishing to update their skills in machine learning. .
650
0
$a
Actuarial science.
$3
943795
650
0
$a
Statistics .
$3
1253516
650
0
$a
Neural networks (Computer science) .
$3
1253765
650
1 4
$a
Actuarial Sciences.
$3
884190
650
2 4
$a
Statistics for Business, Management, Economics, Finance, Insurance.
$3
1211158
650
2 4
$a
Mathematical Models of Cognitive Processes and Neural Networks.
$3
884110
700
1
$a
Hainaut, Donatien.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1300485
700
1
$a
Trufin, Julien.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1300486
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030258269
776
0 8
$i
Printed edition:
$z
9783030258283
830
0
$a
Springer Actuarial Lecture Notes,
$x
2523-3289
$3
1300487
856
4 0
$u
https://doi.org/10.1007/978-3-030-25827-6
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入