語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Linking and Mining Heterogeneous and...
~
Jurek-Loughrey, Anna.
Linking and Mining Heterogeneous and Multi-view Data
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Linking and Mining Heterogeneous and Multi-view Data/ edited by Deepak P, Anna Jurek-Loughrey.
其他作者:
P, Deepak.
面頁冊數:
VIII, 343 p. 66 illus., 52 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Electrical engineering. -
電子資源:
https://doi.org/10.1007/978-3-030-01872-6
ISBN:
9783030018726
Linking and Mining Heterogeneous and Multi-view Data
Linking and Mining Heterogeneous and Multi-view Data
[electronic resource] /edited by Deepak P, Anna Jurek-Loughrey. - 1st ed. 2019. - VIII, 343 p. 66 illus., 52 illus. in color.online resource. - Unsupervised and Semi-Supervised Learning,2522-848X. - Unsupervised and Semi-Supervised Learning,.
Chapter 1. Multi-view Data Completion -- Chapter 2. Multi-view Clustering -- Chapter 3. Semi-supervised and Unsupervised Approaches to Record Pairs Classification in Multi-source Data Linkage -- Chapter 4. A Review of Unsupervised and Semi-Supervised Blocking Methods for Record Linkage -- Chapter 5. Traffic Sensing & Assessing in Digital Transportation Systems -- Chapter 6. How did the discussion go: Discourse act classification in social media conversations -- Chapter 7. Entity Linking in Enterprise Search: Combining Textual and Structural Information -- Chapter 8. Clustering Multi-view Data Using Non-negative Matrix Factorization and Manifold Learning for Effective Understanding: A Survey Paper -- Chapter 9. Leveraging Heterogeneous Data for Fake News Detection -- Chapter 10. On the Evaluation of Community Detection Algorithms on Heterogeneous Social Media Data -- Chapter 11. General Framework for Multi-View Metric Learning -- Chapter 12. Learning from imbalanced datasets with cross-view cooperation-based ensemble methods.
This book highlights research in linking and mining data from across varied data sources. The authors focus on recent advances in this burgeoning field of multi-source data fusion, with an emphasis on exploratory and unsupervised data analysis, an area of increasing significance with the pace of growth of data vastly outpacing any chance of labeling them manually. The book looks at the underlying algorithms and technologies that facilitate the area within big data analytics, it covers their applications across domains such as smarter transportation, social media, fake news detection and enterprise search among others. This book enables readers to understand a spectrum of advances in this emerging area, and it will hopefully empower them to leverage and develop methods in multi-source data fusion and analytics with applications to a variety of scenarios. Includes advances on unsupervised, semi-supervised and supervised approaches to heterogeneous data linkage and fusion; Covers use cases of analytics over multi-view and heterogeneous data from across a variety of domains such as fake news, smarter transportation and social media, among others; Provides a high-level overview of advances in this emerging field and empowers the reader to explore novel applications and methodologies that would enrich the field. .
ISBN: 9783030018726
Standard No.: 10.1007/978-3-030-01872-6doiSubjects--Topical Terms:
596380
Electrical engineering.
LC Class. No.: TK1-9971
Dewey Class. No.: 621.382
Linking and Mining Heterogeneous and Multi-view Data
LDR
:03744nam a22003975i 4500
001
1010335
003
DE-He213
005
20200703125427.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783030018726
$9
978-3-030-01872-6
024
7
$a
10.1007/978-3-030-01872-6
$2
doi
035
$a
978-3-030-01872-6
050
4
$a
TK1-9971
072
7
$a
TJK
$2
bicssc
072
7
$a
TEC041000
$2
bisacsh
072
7
$a
TJK
$2
thema
082
0 4
$a
621.382
$2
23
245
1 0
$a
Linking and Mining Heterogeneous and Multi-view Data
$h
[electronic resource] /
$c
edited by Deepak P, Anna Jurek-Loughrey.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
VIII, 343 p. 66 illus., 52 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Unsupervised and Semi-Supervised Learning,
$x
2522-848X
505
0
$a
Chapter 1. Multi-view Data Completion -- Chapter 2. Multi-view Clustering -- Chapter 3. Semi-supervised and Unsupervised Approaches to Record Pairs Classification in Multi-source Data Linkage -- Chapter 4. A Review of Unsupervised and Semi-Supervised Blocking Methods for Record Linkage -- Chapter 5. Traffic Sensing & Assessing in Digital Transportation Systems -- Chapter 6. How did the discussion go: Discourse act classification in social media conversations -- Chapter 7. Entity Linking in Enterprise Search: Combining Textual and Structural Information -- Chapter 8. Clustering Multi-view Data Using Non-negative Matrix Factorization and Manifold Learning for Effective Understanding: A Survey Paper -- Chapter 9. Leveraging Heterogeneous Data for Fake News Detection -- Chapter 10. On the Evaluation of Community Detection Algorithms on Heterogeneous Social Media Data -- Chapter 11. General Framework for Multi-View Metric Learning -- Chapter 12. Learning from imbalanced datasets with cross-view cooperation-based ensemble methods.
520
$a
This book highlights research in linking and mining data from across varied data sources. The authors focus on recent advances in this burgeoning field of multi-source data fusion, with an emphasis on exploratory and unsupervised data analysis, an area of increasing significance with the pace of growth of data vastly outpacing any chance of labeling them manually. The book looks at the underlying algorithms and technologies that facilitate the area within big data analytics, it covers their applications across domains such as smarter transportation, social media, fake news detection and enterprise search among others. This book enables readers to understand a spectrum of advances in this emerging area, and it will hopefully empower them to leverage and develop methods in multi-source data fusion and analytics with applications to a variety of scenarios. Includes advances on unsupervised, semi-supervised and supervised approaches to heterogeneous data linkage and fusion; Covers use cases of analytics over multi-view and heterogeneous data from across a variety of domains such as fake news, smarter transportation and social media, among others; Provides a high-level overview of advances in this emerging field and empowers the reader to explore novel applications and methodologies that would enrich the field. .
650
0
$a
Electrical engineering.
$3
596380
650
0
$a
Signal processing.
$3
561459
650
0
$a
Image processing.
$3
557495
650
0
$a
Speech processing systems.
$3
564428
650
0
$a
Pattern recognition.
$3
1253525
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Data mining.
$3
528622
650
1 4
$a
Communications Engineering, Networks.
$3
669809
650
2 4
$a
Signal, Image and Speech Processing.
$3
670837
650
2 4
$a
Pattern Recognition.
$3
669796
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
700
1
$a
P, Deepak.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1067024
700
1
$a
Jurek-Loughrey, Anna.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1304410
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030018719
776
0 8
$i
Printed edition:
$z
9783030018733
830
0
$a
Unsupervised and Semi-Supervised Learning,
$x
2522-848X
$3
1304411
856
4 0
$u
https://doi.org/10.1007/978-3-030-01872-6
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入