語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Fractal Dimension for Fractal Struct...
~
Sánchez-Granero, Miguel Ángel.
Fractal Dimension for Fractal Structures = With Applications to Finance /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Fractal Dimension for Fractal Structures/ by Manuel Fernández-Martínez, Juan Luis García Guirao, Miguel Ángel Sánchez-Granero, Juan Evangelista Trinidad Segovia.
其他題名:
With Applications to Finance /
作者:
Fernández-Martínez, Manuel.
其他作者:
García Guirao, Juan Luis.
面頁冊數:
XVII, 204 p. 31 illus., 25 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Dynamics. -
電子資源:
https://doi.org/10.1007/978-3-030-16645-8
ISBN:
9783030166458
Fractal Dimension for Fractal Structures = With Applications to Finance /
Fernández-Martínez, Manuel.
Fractal Dimension for Fractal Structures
With Applications to Finance /[electronic resource] :by Manuel Fernández-Martínez, Juan Luis García Guirao, Miguel Ángel Sánchez-Granero, Juan Evangelista Trinidad Segovia. - 1st ed. 2019. - XVII, 204 p. 31 illus., 25 illus. in color.online resource. - SEMA SIMAI Springer Series,192199-3041 ;. - SEMA SIMAI Springer Series,5.
1 Mathematical background -- 2 Box dimension type models -- 3 A middle definition between Hausdorff and box dimensions -- 4 Hausdorff dimension type models for fractal structures.
This book provides a generalised approach to fractal dimension theory from the standpoint of asymmetric topology by employing the concept of a fractal structure. The fractal dimension is the main invariant of a fractal set, and provides useful information regarding the irregularities it presents when examined at a suitable level of detail. New theoretical models for calculating the fractal dimension of any subset with respect to a fractal structure are posed to generalise both the Hausdorff and box-counting dimensions. Some specific results for self-similar sets are also proved. Unlike classical fractal dimensions, these new models can be used with empirical applications of fractal dimension including non-Euclidean contexts. In addition, the book applies these fractal dimensions to explore long-memory in financial markets. In particular, novel results linking both fractal dimension and the Hurst exponent are provided. As such, the book provides a number of algorithms for properly calculating the self-similarity exponent of a wide range of processes, including (fractional) Brownian motion and Lévy stable processes. The algorithms also make it possible to analyse long-memory in real stocks and international indexes. This book is addressed to those researchers interested in fractal geometry, self-similarity patterns, and computational applications involving fractal dimension and Hurst exponent.
ISBN: 9783030166458
Standard No.: 10.1007/978-3-030-16645-8doiSubjects--Topical Terms:
592238
Dynamics.
LC Class. No.: QA313
Dewey Class. No.: 515.39
Fractal Dimension for Fractal Structures = With Applications to Finance /
LDR
:03168nam a22004215i 4500
001
1010585
003
DE-He213
005
20200704200000.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783030166458
$9
978-3-030-16645-8
024
7
$a
10.1007/978-3-030-16645-8
$2
doi
035
$a
978-3-030-16645-8
050
4
$a
QA313
072
7
$a
PBWR
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBWR
$2
thema
082
0 4
$a
515.39
$2
23
082
0 4
$a
515.48
$2
23
100
1
$a
Fernández-Martínez, Manuel.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1304669
245
1 0
$a
Fractal Dimension for Fractal Structures
$h
[electronic resource] :
$b
With Applications to Finance /
$c
by Manuel Fernández-Martínez, Juan Luis García Guirao, Miguel Ángel Sánchez-Granero, Juan Evangelista Trinidad Segovia.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
XVII, 204 p. 31 illus., 25 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SEMA SIMAI Springer Series,
$x
2199-3041 ;
$v
19
505
0
$a
1 Mathematical background -- 2 Box dimension type models -- 3 A middle definition between Hausdorff and box dimensions -- 4 Hausdorff dimension type models for fractal structures.
520
$a
This book provides a generalised approach to fractal dimension theory from the standpoint of asymmetric topology by employing the concept of a fractal structure. The fractal dimension is the main invariant of a fractal set, and provides useful information regarding the irregularities it presents when examined at a suitable level of detail. New theoretical models for calculating the fractal dimension of any subset with respect to a fractal structure are posed to generalise both the Hausdorff and box-counting dimensions. Some specific results for self-similar sets are also proved. Unlike classical fractal dimensions, these new models can be used with empirical applications of fractal dimension including non-Euclidean contexts. In addition, the book applies these fractal dimensions to explore long-memory in financial markets. In particular, novel results linking both fractal dimension and the Hurst exponent are provided. As such, the book provides a number of algorithms for properly calculating the self-similarity exponent of a wide range of processes, including (fractional) Brownian motion and Lévy stable processes. The algorithms also make it possible to analyse long-memory in real stocks and international indexes. This book is addressed to those researchers interested in fractal geometry, self-similarity patterns, and computational applications involving fractal dimension and Hurst exponent.
650
0
$a
Dynamics.
$3
592238
650
0
$a
Ergodic theory.
$3
672355
650
0
$a
Topology.
$3
633483
650
0
$a
Measure theory.
$3
527848
650
0
$a
Probabilities.
$3
527847
650
0
$a
Algorithms.
$3
527865
650
0
$a
Computer science—Mathematics.
$3
1253519
650
0
$a
Computer mathematics.
$3
1199796
650
1 4
$a
Dynamical Systems and Ergodic Theory.
$3
671353
650
2 4
$a
Measure and Integration.
$3
672015
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
593945
650
2 4
$a
Mathematical Applications in Computer Science.
$3
815331
700
1
$a
García Guirao, Juan Luis.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1304670
700
1
$a
Sánchez-Granero, Miguel Ángel.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1304671
700
1
$a
Trinidad Segovia, Juan Evangelista.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1304672
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030166441
776
0 8
$i
Printed edition:
$z
9783030166465
776
0 8
$i
Printed edition:
$z
9783030166472
830
0
$a
SEMA SIMAI Springer Series,
$x
2199-3041 ;
$v
5
$3
1262367
856
4 0
$u
https://doi.org/10.1007/978-3-030-16645-8
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入