語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Applying Predictive Analytics = Find...
~
McCarthy, Richard V.
Applying Predictive Analytics = Finding Value in Data /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Applying Predictive Analytics/ by Richard V. McCarthy, Mary M. McCarthy, Wendy Ceccucci, Leila Halawi.
其他題名:
Finding Value in Data /
作者:
McCarthy, Richard V.
其他作者:
McCarthy, Mary M.
面頁冊數:
X, 205 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Electrical engineering. -
電子資源:
https://doi.org/10.1007/978-3-030-14038-0
ISBN:
9783030140380
Applying Predictive Analytics = Finding Value in Data /
McCarthy, Richard V.
Applying Predictive Analytics
Finding Value in Data /[electronic resource] :by Richard V. McCarthy, Mary M. McCarthy, Wendy Ceccucci, Leila Halawi. - 1st ed. 2019. - X, 205 p.online resource.
Introduction to Predictive Analytics -- Know Your Data – Data Preparation -- What do Descriptive Statistics Tell Us -- The First of the Big Three – Regression -- The Second of the Big Three – Decision Trees -- The Third of the Big Three - Neural Networks -- Model Comparisons and Scoring -- Appendix A -- Data Dictionary for the Automobile Insurance Claim Fraud Data Example -- Conclusion.
This textbook presents a practical approach to predictive analytics for classroom learning. It focuses on using analytics to solve business problems and compares several different modeling techniques, all explained from examples using the SAS Enterprise Miner software. The authors demystify complex algorithms to show how they can be utilized and explained within the context of enhancing business opportunities. Each chapter includes an opening vignette that provides real-life example of how business analytics have been used in various aspects of organizations to solve issue or improve their results. A running case provides an example of a how to build and analyze a complex analytics model and utilize it to predict future outcomes. Focuses on how to use predictive analytic techniques to analyze historical data for the purpose of predicting future results; Takes an applied approach and focus on solving business problems using predictive analytics and features case studies and a variety of examples; Uses examples in SAS Enterprise Miner, one of world’s leading analytics software tools.
ISBN: 9783030140380
Standard No.: 10.1007/978-3-030-14038-0doiSubjects--Topical Terms:
596380
Electrical engineering.
LC Class. No.: TK1-9971
Dewey Class. No.: 621.382
Applying Predictive Analytics = Finding Value in Data /
LDR
:02847nam a22003975i 4500
001
1012302
003
DE-He213
005
20200702032607.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783030140380
$9
978-3-030-14038-0
024
7
$a
10.1007/978-3-030-14038-0
$2
doi
035
$a
978-3-030-14038-0
050
4
$a
TK1-9971
072
7
$a
TJK
$2
bicssc
072
7
$a
TEC041000
$2
bisacsh
072
7
$a
TJK
$2
thema
082
0 4
$a
621.382
$2
23
100
1
$a
McCarthy, Richard V.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1306558
245
1 0
$a
Applying Predictive Analytics
$h
[electronic resource] :
$b
Finding Value in Data /
$c
by Richard V. McCarthy, Mary M. McCarthy, Wendy Ceccucci, Leila Halawi.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
X, 205 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Introduction to Predictive Analytics -- Know Your Data – Data Preparation -- What do Descriptive Statistics Tell Us -- The First of the Big Three – Regression -- The Second of the Big Three – Decision Trees -- The Third of the Big Three - Neural Networks -- Model Comparisons and Scoring -- Appendix A -- Data Dictionary for the Automobile Insurance Claim Fraud Data Example -- Conclusion.
520
$a
This textbook presents a practical approach to predictive analytics for classroom learning. It focuses on using analytics to solve business problems and compares several different modeling techniques, all explained from examples using the SAS Enterprise Miner software. The authors demystify complex algorithms to show how they can be utilized and explained within the context of enhancing business opportunities. Each chapter includes an opening vignette that provides real-life example of how business analytics have been used in various aspects of organizations to solve issue or improve their results. A running case provides an example of a how to build and analyze a complex analytics model and utilize it to predict future outcomes. Focuses on how to use predictive analytic techniques to analyze historical data for the purpose of predicting future results; Takes an applied approach and focus on solving business problems using predictive analytics and features case studies and a variety of examples; Uses examples in SAS Enterprise Miner, one of world’s leading analytics software tools.
650
0
$a
Electrical engineering.
$3
596380
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Data mining.
$3
528622
650
0
$a
Big data.
$3
981821
650
1 4
$a
Communications Engineering, Networks.
$3
669809
650
2 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Big Data/Analytics.
$3
1106909
700
1
$a
McCarthy, Mary M.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1306559
700
1
$a
Ceccucci, Wendy.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1306560
700
1
$a
Halawi, Leila.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1306561
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030140373
776
0 8
$i
Printed edition:
$z
9783030140397
776
0 8
$i
Printed edition:
$z
9783030140403
856
4 0
$u
https://doi.org/10.1007/978-3-030-14038-0
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入