語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Genome Data Analysis
~
SpringerLink (Online service)
Genome Data Analysis
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Genome Data Analysis/ by Ju Han Kim.
作者:
Kim, Ju Han.
面頁冊數:
XVI, 367 p. 645 illus., 236 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Bioinformatics. -
電子資源:
https://doi.org/10.1007/978-981-13-1942-6
ISBN:
9789811319426
Genome Data Analysis
Kim, Ju Han.
Genome Data Analysis
[electronic resource] /by Ju Han Kim. - 1st ed. 2019. - XVI, 367 p. 645 illus., 236 illus. in color.online resource. - Learning Materials in Biosciences,2509-6125. - Learning Materials in Biosciences,1.
Part 1. BIOINFORMATICS FOR LIFE AND PERSONAL GENOME INTERPRETATION -- Chapter 1. Bioinformatics For Life -- Chapter 2. Next Generation Sequencing and Personal Genome Data Analysis -- Chapter 3. Personal Genome Data Analysis -- Chapter 4. Personal Genome Interpretation and Disease Risk Prediction -- Part 2. ADVANCED MICROARRAY DATA ANALYSIS -- Chapter 5. Advanced Microarray Data Analysis -- Chapter 6. Gene Expression Data Analysis -- Chapter 7. Gene Ontology and Biological Pathway-based Analysis -- Chapter 8. Gene-set Approaches and Prognostic Subgroup Prediction -- Chapter 9. MicroRNA Data Analysis -- Part 3. NETWORK BIOLOGY, SEQUENCE, PATHWAY AND ONTOLOGY INFORMATICS -- Chapter 10. Network Biology, Sequence, Pathway and Ontology Informatics -- Chapter 11. Motif and Regulatory Sequence Analysis -- Chapter 12. Molecular Pathways and Gene Ontology -- Chapter 13. Biological Network Analysis -- Part 4. SNPS, GWAS AND CNVS, INFORMATICS FOR GENOME VARIANTS -- Chapter 14. SNPs, GWAS, CNVs: Informatics for Human Genome Variations -- Chapter 15. SNP Data Analysis -- Chapter 16. GWAS Data Analysis -- Chapter 17. CNV Data Analysis -- Part 5. METAGENOME AND EPIGENOME, BASIC DATA ANALYSIS -- Chapter 18. Metagenome and Epigenome Data Analysis -- Chapter 19. Metagenome Data Analysis -- Chapter 20. Epigenome Databases and Tools -- Chapter 21. Epigenome Data Analysis -- Appendix A. BASIC PRACTICE USING R FOR DATA ANALYSIS -- Appendix B. APPLICATION PROGRAM FOR GENOME DATA ANALYSIS INSTALL GUIDE.
This textbook describes recent advances in genomics and bioinformatics and provides numerous examples of genome data analysis that illustrate its relevance to real world problems and will improve the reader’s bioinformatics skills. Basic data preprocessing with normalization and filtering, primary pattern analysis, and machine learning algorithms using R and Python are demonstrated for gene-expression microarrays, genotyping microarrays, next-generation sequencing data, epigenomic data, and biological network and semantic analyses. In addition, detailed attention is devoted to integrative genomic data analysis, including multivariate data projection, gene-metabolic pathway mapping, automated biomolecular annotation, text mining of factual and literature databases, and integrated management of biomolecular databases. This textbook is primarily intended for life scientists, medical scientists, statisticians, data processing researchers, engineers, and other beginners in bioinformatics who are experiencing difficulty in approaching the field. However, it will also serve as a simple guideline for experts unfamiliar with the new, developing subfield of genomic analysis within bioinformatics.
ISBN: 9789811319426
Standard No.: 10.1007/978-981-13-1942-6doiSubjects--Topical Terms:
583857
Bioinformatics.
LC Class. No.: QH324.2-324.25
Dewey Class. No.: 570.285
Genome Data Analysis
LDR
:04076nam a22004095i 4500
001
1012646
003
DE-He213
005
20200701005859.0
007
cr nn 008mamaa
008
210106s2019 si | s |||| 0|eng d
020
$a
9789811319426
$9
978-981-13-1942-6
024
7
$a
10.1007/978-981-13-1942-6
$2
doi
035
$a
978-981-13-1942-6
050
4
$a
QH324.2-324.25
072
7
$a
PSD
$2
bicssc
072
7
$a
SCI056000
$2
bisacsh
072
7
$a
PSD
$2
thema
072
7
$a
UB
$2
thema
082
0 4
$a
570.285
$2
23
100
1
$a
Kim, Ju Han.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1225790
245
1 0
$a
Genome Data Analysis
$h
[electronic resource] /
$c
by Ju Han Kim.
250
$a
1st ed. 2019.
264
1
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
XVI, 367 p. 645 illus., 236 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Learning Materials in Biosciences,
$x
2509-6125
505
0
$a
Part 1. BIOINFORMATICS FOR LIFE AND PERSONAL GENOME INTERPRETATION -- Chapter 1. Bioinformatics For Life -- Chapter 2. Next Generation Sequencing and Personal Genome Data Analysis -- Chapter 3. Personal Genome Data Analysis -- Chapter 4. Personal Genome Interpretation and Disease Risk Prediction -- Part 2. ADVANCED MICROARRAY DATA ANALYSIS -- Chapter 5. Advanced Microarray Data Analysis -- Chapter 6. Gene Expression Data Analysis -- Chapter 7. Gene Ontology and Biological Pathway-based Analysis -- Chapter 8. Gene-set Approaches and Prognostic Subgroup Prediction -- Chapter 9. MicroRNA Data Analysis -- Part 3. NETWORK BIOLOGY, SEQUENCE, PATHWAY AND ONTOLOGY INFORMATICS -- Chapter 10. Network Biology, Sequence, Pathway and Ontology Informatics -- Chapter 11. Motif and Regulatory Sequence Analysis -- Chapter 12. Molecular Pathways and Gene Ontology -- Chapter 13. Biological Network Analysis -- Part 4. SNPS, GWAS AND CNVS, INFORMATICS FOR GENOME VARIANTS -- Chapter 14. SNPs, GWAS, CNVs: Informatics for Human Genome Variations -- Chapter 15. SNP Data Analysis -- Chapter 16. GWAS Data Analysis -- Chapter 17. CNV Data Analysis -- Part 5. METAGENOME AND EPIGENOME, BASIC DATA ANALYSIS -- Chapter 18. Metagenome and Epigenome Data Analysis -- Chapter 19. Metagenome Data Analysis -- Chapter 20. Epigenome Databases and Tools -- Chapter 21. Epigenome Data Analysis -- Appendix A. BASIC PRACTICE USING R FOR DATA ANALYSIS -- Appendix B. APPLICATION PROGRAM FOR GENOME DATA ANALYSIS INSTALL GUIDE.
520
$a
This textbook describes recent advances in genomics and bioinformatics and provides numerous examples of genome data analysis that illustrate its relevance to real world problems and will improve the reader’s bioinformatics skills. Basic data preprocessing with normalization and filtering, primary pattern analysis, and machine learning algorithms using R and Python are demonstrated for gene-expression microarrays, genotyping microarrays, next-generation sequencing data, epigenomic data, and biological network and semantic analyses. In addition, detailed attention is devoted to integrative genomic data analysis, including multivariate data projection, gene-metabolic pathway mapping, automated biomolecular annotation, text mining of factual and literature databases, and integrated management of biomolecular databases. This textbook is primarily intended for life scientists, medical scientists, statisticians, data processing researchers, engineers, and other beginners in bioinformatics who are experiencing difficulty in approaching the field. However, it will also serve as a simple guideline for experts unfamiliar with the new, developing subfield of genomic analysis within bioinformatics.
650
0
$a
Bioinformatics.
$3
583857
650
0
$a
Medicine.
$3
644133
650
0
$a
Statistics .
$3
1253516
650
2 4
$a
Biomedicine, general.
$3
1253757
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
670172
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9789811319419
776
0 8
$i
Printed edition:
$z
9789811319433
830
0
$a
Learning Materials in Biosciences,
$x
2509-6125 ;
$v
1
$3
1269359
856
4 0
$u
https://doi.org/10.1007/978-981-13-1942-6
912
$a
ZDB-2-SBL
912
$a
ZDB-2-SXB
950
$a
Biomedical and Life Sciences (SpringerNature-11642)
950
$a
Biomedical and Life Sciences (R0) (SpringerNature-43708)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入