語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Embedded Deep Learning = Algorithms,...
~
Verhelst, Marian.
Embedded Deep Learning = Algorithms, Architectures and Circuits for Always-on Neural Network Processing /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Embedded Deep Learning/ by Bert Moons, Daniel Bankman, Marian Verhelst.
其他題名:
Algorithms, Architectures and Circuits for Always-on Neural Network Processing /
作者:
Moons, Bert.
其他作者:
Bankman, Daniel.
面頁冊數:
XVI, 206 p. 124 illus., 92 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Electronic circuits. -
電子資源:
https://doi.org/10.1007/978-3-319-99223-5
ISBN:
9783319992235
Embedded Deep Learning = Algorithms, Architectures and Circuits for Always-on Neural Network Processing /
Moons, Bert.
Embedded Deep Learning
Algorithms, Architectures and Circuits for Always-on Neural Network Processing /[electronic resource] :by Bert Moons, Daniel Bankman, Marian Verhelst. - 1st ed. 2019. - XVI, 206 p. 124 illus., 92 illus. in color.online resource.
Chapter 1 Embedded Deep Neural Networks -- Chapter 2 Optimized Hierarchical Cascaded Processing -- Chapter 3 Hardware-Algorithm Co-optimizations -- Chapter 4 Circuit Techniques for Approximate Computing -- Chapter 5 ENVISION: Energy-Scalable Sparse Convolutional Neural Network Processing -- Chapter 6 BINAREYE: Digital and Mixed-signal Always-on Binary Neural Network Processing -- Chapter 7 Conclusions, contributions and future work.
This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning. Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices; Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy – applications, algorithms, hardware architectures, and circuits – supported by real silicon prototypes; Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations; Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization’s implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts.
ISBN: 9783319992235
Standard No.: 10.1007/978-3-319-99223-5doiSubjects--Topical Terms:
563332
Electronic circuits.
LC Class. No.: TK7888.4
Dewey Class. No.: 621.3815
Embedded Deep Learning = Algorithms, Architectures and Circuits for Always-on Neural Network Processing /
LDR
:03054nam a22003975i 4500
001
1012736
003
DE-He213
005
20200629154409.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783319992235
$9
978-3-319-99223-5
024
7
$a
10.1007/978-3-319-99223-5
$2
doi
035
$a
978-3-319-99223-5
050
4
$a
TK7888.4
072
7
$a
TJFC
$2
bicssc
072
7
$a
TEC008010
$2
bisacsh
072
7
$a
TJFC
$2
thema
082
0 4
$a
621.3815
$2
23
100
1
$a
Moons, Bert.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1307008
245
1 0
$a
Embedded Deep Learning
$h
[electronic resource] :
$b
Algorithms, Architectures and Circuits for Always-on Neural Network Processing /
$c
by Bert Moons, Daniel Bankman, Marian Verhelst.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
XVI, 206 p. 124 illus., 92 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Chapter 1 Embedded Deep Neural Networks -- Chapter 2 Optimized Hierarchical Cascaded Processing -- Chapter 3 Hardware-Algorithm Co-optimizations -- Chapter 4 Circuit Techniques for Approximate Computing -- Chapter 5 ENVISION: Energy-Scalable Sparse Convolutional Neural Network Processing -- Chapter 6 BINAREYE: Digital and Mixed-signal Always-on Binary Neural Network Processing -- Chapter 7 Conclusions, contributions and future work.
520
$a
This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning. Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices; Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy – applications, algorithms, hardware architectures, and circuits – supported by real silicon prototypes; Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations; Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization’s implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts.
650
0
$a
Electronic circuits.
$3
563332
650
0
$a
Signal processing.
$3
561459
650
0
$a
Image processing.
$3
557495
650
0
$a
Speech processing systems.
$3
564428
650
0
$a
Electronics.
$3
596389
650
0
$a
Microelectronics.
$3
554956
650
1 4
$a
Circuits and Systems.
$3
670901
650
2 4
$a
Signal, Image and Speech Processing.
$3
670837
650
2 4
$a
Electronics and Microelectronics, Instrumentation.
$3
670219
700
1
$a
Bankman, Daniel.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1307009
700
1
$a
Verhelst, Marian.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1307010
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319992228
776
0 8
$i
Printed edition:
$z
9783319992242
776
0 8
$i
Printed edition:
$z
9783030075774
856
4 0
$u
https://doi.org/10.1007/978-3-319-99223-5
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入