語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
PySpark SQL Recipes = With HiveQL, D...
~
SpringerLink (Online service)
PySpark SQL Recipes = With HiveQL, Dataframe and Graphframes /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
PySpark SQL Recipes/ by Raju Kumar Mishra, Sundar Rajan Raman.
其他題名:
With HiveQL, Dataframe and Graphframes /
作者:
Mishra, Raju Kumar.
其他作者:
Raman, Sundar Rajan.
面頁冊數:
XXIV, 323 p. 57 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Big data. -
電子資源:
https://doi.org/10.1007/978-1-4842-4335-0
ISBN:
9781484243350
PySpark SQL Recipes = With HiveQL, Dataframe and Graphframes /
Mishra, Raju Kumar.
PySpark SQL Recipes
With HiveQL, Dataframe and Graphframes /[electronic resource] :by Raju Kumar Mishra, Sundar Rajan Raman. - 1st ed. 2019. - XXIV, 323 p. 57 illus.online resource.
Chapter 1: Introduction to PySparkSQL -- Chapter 2: Some time with Installation -- Chapter 3: IO in PySparkSQL -- Chapter 4 : Operations on PySparkSQL DataFrames -- Chapter 5 : Data Merging and Data Aggregation using PySparkSQL -- Chapter 6: SQL, NoSQL and PySparkSQL -- Chapter 7: Structured Streaming -- Chapter 8 : Optimizing PySparkSQL -- Chapter 9 : GraphFrames.
Carry out data analysis with PySpark SQL, graphframes, and graph data processing using a problem-solution approach. This book provides solutions to problems related to dataframes, data manipulation summarization, and exploratory analysis. You will improve your skills in graph data analysis using graphframes and see how to optimize your PySpark SQL code. PySpark SQL Recipes starts with recipes on creating dataframes from different types of data source, data aggregation and summarization, and exploratory data analysis using PySpark SQL. You’ll also discover how to solve problems in graph analysis using graphframes. On completing this book, you’ll have ready-made code for all your PySpark SQL tasks, including creating dataframes using data from different file formats as well as from SQL or NoSQL databases. You will: Understand PySpark SQL and its advanced features Use SQL and HiveQL with PySpark SQL Work with structured streaming Optimize PySpark SQL Master graphframes and graph processing.
ISBN: 9781484243350
Standard No.: 10.1007/978-1-4842-4335-0doiSubjects--Topical Terms:
981821
Big data.
LC Class. No.: QA76.9.B45
Dewey Class. No.: 005.7
PySpark SQL Recipes = With HiveQL, Dataframe and Graphframes /
LDR
:02691nam a22003855i 4500
001
1012860
003
DE-He213
005
20200629130021.0
007
cr nn 008mamaa
008
210106s2019 xxu| s |||| 0|eng d
020
$a
9781484243350
$9
978-1-4842-4335-0
024
7
$a
10.1007/978-1-4842-4335-0
$2
doi
035
$a
978-1-4842-4335-0
050
4
$a
QA76.9.B45
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
005.7
$2
23
100
1
$a
Mishra, Raju Kumar.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1288757
245
1 0
$a
PySpark SQL Recipes
$h
[electronic resource] :
$b
With HiveQL, Dataframe and Graphframes /
$c
by Raju Kumar Mishra, Sundar Rajan Raman.
250
$a
1st ed. 2019.
264
1
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2019.
300
$a
XXIV, 323 p. 57 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Chapter 1: Introduction to PySparkSQL -- Chapter 2: Some time with Installation -- Chapter 3: IO in PySparkSQL -- Chapter 4 : Operations on PySparkSQL DataFrames -- Chapter 5 : Data Merging and Data Aggregation using PySparkSQL -- Chapter 6: SQL, NoSQL and PySparkSQL -- Chapter 7: Structured Streaming -- Chapter 8 : Optimizing PySparkSQL -- Chapter 9 : GraphFrames.
520
$a
Carry out data analysis with PySpark SQL, graphframes, and graph data processing using a problem-solution approach. This book provides solutions to problems related to dataframes, data manipulation summarization, and exploratory analysis. You will improve your skills in graph data analysis using graphframes and see how to optimize your PySpark SQL code. PySpark SQL Recipes starts with recipes on creating dataframes from different types of data source, data aggregation and summarization, and exploratory data analysis using PySpark SQL. You’ll also discover how to solve problems in graph analysis using graphframes. On completing this book, you’ll have ready-made code for all your PySpark SQL tasks, including creating dataframes using data from different file formats as well as from SQL or NoSQL databases. You will: Understand PySpark SQL and its advanced features Use SQL and HiveQL with PySpark SQL Work with structured streaming Optimize PySpark SQL Master graphframes and graph processing.
650
0
$a
Big data.
$3
981821
650
0
$a
Open source software.
$3
561177
650
0
$a
Computer programming.
$3
527822
650
0
$a
Python (Computer program language).
$3
1127623
650
0
$a
Programming languages (Electronic computers).
$3
1127615
650
1 4
$a
Big Data.
$3
1017136
650
2 4
$a
Open Source.
$3
1113081
650
2 4
$a
Python.
$3
1115944
650
2 4
$a
Programming Languages, Compilers, Interpreters.
$3
669782
700
1
$a
Raman, Sundar Rajan.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1307151
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9781484243343
776
0 8
$i
Printed edition:
$z
9781484243367
856
4 0
$u
https://doi.org/10.1007/978-1-4842-4335-0
912
$a
ZDB-2-CWD
912
$a
ZDB-2-SXPC
950
$a
Professional and Applied Computing (SpringerNature-12059)
950
$a
Professional and Applied Computing (R0) (SpringerNature-43716)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入