語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Computational Diffusion MRI = Intern...
~
Grussu, Francesco.
Computational Diffusion MRI = International MICCAI Workshop, Granada, Spain, September 2018 /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Computational Diffusion MRI/ edited by Elisenda Bonet-Carne, Francesco Grussu, Lipeng Ning, Farshid Sepehrband, Chantal M. W. Tax.
其他題名:
International MICCAI Workshop, Granada, Spain, September 2018 /
其他作者:
Bonet-Carne, Elisenda.
面頁冊數:
XII, 390 p. 125 illus., 109 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Biomathematics. -
電子資源:
https://doi.org/10.1007/978-3-030-05831-9
ISBN:
9783030058319
Computational Diffusion MRI = International MICCAI Workshop, Granada, Spain, September 2018 /
Computational Diffusion MRI
International MICCAI Workshop, Granada, Spain, September 2018 /[electronic resource] :edited by Elisenda Bonet-Carne, Francesco Grussu, Lipeng Ning, Farshid Sepehrband, Chantal M. W. Tax. - 1st ed. 2019. - XII, 390 p. 125 illus., 109 illus. in color.online resource. - Mathematics and Visualization,1612-3786. - Mathematics and Visualization,.
Part I Diffusion MRI signal acquisition and processing strategies -- Part II Machine learning for diffusion MRI -- Part III Diffusion MRI signal harmonisation -- Part IV Diffusion MRI outside the brain and clinical applications -- Part V Tractography and connectivity mapping -- Index.
This volume gathers papers presented at the Workshop on Computational Diffusion MRI (CDMRI’18), which was held under the auspices of the International Conference on Medical Image Computing and Computer Assisted Intervention in Granada, Spain on September 20, 2018. It presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find papers on a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as harmonisation and frontline applications in research and clinical practice. The respective papers constitute invited works from high-profile researchers with a specific focus on three topics that are now gaining momentum within the diffusion MRI community: i) machine learning for diffusion MRI; ii) diffusion MRI outside the brain (e.g. in the placenta); and iii) diffusion MRI for multimodal imaging. The book shares new perspectives on the latest research challenges for those currently working in the field, but also offers a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. It includes rigorous mathematical derivations, a wealth of full-colour visualisations, and clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics alike. .
ISBN: 9783030058319
Standard No.: 10.1007/978-3-030-05831-9doiSubjects--Topical Terms:
527725
Biomathematics.
LC Class. No.: QH323.5
Dewey Class. No.: 570.285
Computational Diffusion MRI = International MICCAI Workshop, Granada, Spain, September 2018 /
LDR
:03349nam a22004095i 4500
001
1012942
003
DE-He213
005
20201123162449.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783030058319
$9
978-3-030-05831-9
024
7
$a
10.1007/978-3-030-05831-9
$2
doi
035
$a
978-3-030-05831-9
050
4
$a
QH323.5
050
4
$a
QH324.2-324.25
072
7
$a
PDE
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PDE
$2
thema
082
0 4
$a
570.285
$2
23
245
1 0
$a
Computational Diffusion MRI
$h
[electronic resource] :
$b
International MICCAI Workshop, Granada, Spain, September 2018 /
$c
edited by Elisenda Bonet-Carne, Francesco Grussu, Lipeng Ning, Farshid Sepehrband, Chantal M. W. Tax.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
XII, 390 p. 125 illus., 109 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Mathematics and Visualization,
$x
1612-3786
505
0
$a
Part I Diffusion MRI signal acquisition and processing strategies -- Part II Machine learning for diffusion MRI -- Part III Diffusion MRI signal harmonisation -- Part IV Diffusion MRI outside the brain and clinical applications -- Part V Tractography and connectivity mapping -- Index.
520
$a
This volume gathers papers presented at the Workshop on Computational Diffusion MRI (CDMRI’18), which was held under the auspices of the International Conference on Medical Image Computing and Computer Assisted Intervention in Granada, Spain on September 20, 2018. It presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find papers on a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as harmonisation and frontline applications in research and clinical practice. The respective papers constitute invited works from high-profile researchers with a specific focus on three topics that are now gaining momentum within the diffusion MRI community: i) machine learning for diffusion MRI; ii) diffusion MRI outside the brain (e.g. in the placenta); and iii) diffusion MRI for multimodal imaging. The book shares new perspectives on the latest research challenges for those currently working in the field, but also offers a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. It includes rigorous mathematical derivations, a wealth of full-colour visualisations, and clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics alike. .
650
0
$a
Biomathematics.
$3
527725
650
0
$a
Numerical analysis.
$3
527939
650
0
$a
Computer science—Mathematics.
$3
1253519
650
0
$a
Optical data processing.
$3
639187
650
0
$a
Computer simulation.
$3
560190
650
0
$a
Artificial intelligence.
$3
559380
650
1 4
$a
Mathematical and Computational Biology.
$3
786706
650
2 4
$a
Numeric Computing.
$3
669943
650
2 4
$a
Math Applications in Computer Science.
$3
669887
650
2 4
$a
Image Processing and Computer Vision.
$3
670819
650
2 4
$a
Simulation and Modeling.
$3
669249
650
2 4
$a
Artificial Intelligence.
$3
646849
700
1
$a
Bonet-Carne, Elisenda.
$e
editor.
$1
https://orcid.org/0000-0003-0567-6141
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1307242
700
1
$a
Grussu, Francesco.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1284507
700
1
$a
Ning, Lipeng.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1284508
700
1
$a
Sepehrband, Farshid.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1307243
700
1
$a
Tax, Chantal M. W.
$e
editor.
$1
https://orcid.org/0000-0002-7480-8817
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1284509
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030058302
776
0 8
$i
Printed edition:
$z
9783030058326
830
0
$a
Mathematics and Visualization,
$x
1612-3786
$3
1258559
856
4 0
$u
https://doi.org/10.1007/978-3-030-05831-9
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入