語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Research in Data Science
~
Gasparovic, Ellen.
Research in Data Science
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Research in Data Science/ edited by Ellen Gasparovic, Carlotta Domeniconi.
其他作者:
Gasparovic, Ellen.
面頁冊數:
XIV, 297 p. 120 illus., 106 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computer science—Mathematics. -
電子資源:
https://doi.org/10.1007/978-3-030-11566-1
ISBN:
9783030115661
Research in Data Science
Research in Data Science
[electronic resource] /edited by Ellen Gasparovic, Carlotta Domeniconi. - 1st ed. 2019. - XIV, 297 p. 120 illus., 106 illus. in color.online resource. - Association for Women in Mathematics Series,172364-5733 ;. - Association for Women in Mathematics Series,1.
Preface -- N. Durgin, R. Grotheer, C. Huang, S. Li, A. Ma, D. Needell, and J. Qin: Sparse Randomized Kaczmarz for Support Recovery of Jointly Sparse Corrupted Multiple Measurement Vectors -- P. Mani, M. Vazquez, J. R. Metcalf-Burton, C. Domeniconi, H. Fairbanks, G. Bal, E. Beer, and S. Tari: The Hubness Phenomenon in High Dimensional Spaces -- F. P. Medina, L. Ness, M. Weber, and K. Y. Djima: Heuristic Framework for Multiscale Testing of the Multi-Manifold Hypothesis -- K. Leonard, Y. Zhou, X. Wang, and G. Heo: High-dimensional Multiple Scaled Data Analysis of Obstructive Sleep Apnea Study with Interdisciplinary Endeavor -- E. Munch and A. Stefanou: The L(infinity)-Cophenetic Metric for Phylogenetic Trees as an Interleaving Distance -- L. Ness: Inference of a Dyadic Measure and its Simplicia Geometry from Binary Feature Data and Application to Data Quality -- A. Genctav, M. Genctav, and S. Tari: A Non-local Measure for Mesh Saliency via Feature Space Reduction -- F. Seeger, A. Little, Y. Chen, T. Woolf, H. Cheng, and J. C. Mitchell: Feature Design for Protein Interface Hotspots using KFC2 and Rosetta -- R. Aroutiounian, K. Leonard, R. Moreno, R. Teufel: Geometry-Based Classification for Automated Schizophrenia Diagnosis -- N. Durgin, R. Grotheer, C. Huang, S. Li, A. Ma, D. Needell, and J. Qin: Compressed Anomaly Detection with Multiple Mixed Observations -- A. Grim, B. Iskra, N. Ju, A. Kryshchenko, F. P. Medina, L. Ness, M. Ngamini, M. Owen, R. Paffenroth, and S. Tang: Analysis of Simulated Crowd Flow Exit Data: Visualization, Panic Detection, and Exit Time Convergence, Attribution and Estimation -- V. Adanova and S. Tari: A Data Driven Modeling of Ornaments. .
This edited volume on data science features a variety of research ranging from theoretical to applied and computational topics. Aiming to establish the important connection between mathematics and data science, this book addresses cutting edge problems in predictive modeling, multi-scale representation and feature selection, statistical and topological learning, and related areas. Contributions study topics such as the hubness phenomenon in high-dimensional spaces, the use of a heuristic framework for testing the multi-manifold hypothesis for high-dimensional data, the investigation of interdisciplinary approaches to multi-dimensional obstructive sleep apnea patient data, and the inference of a dyadic measure and its simplicial geometry from binary feature data. Based on the first Women in Data Science and Mathematics (WiSDM) Research Collaboration Workshop that took place in 2017 at the Institute for Compuational and Experimental Research in Mathematics (ICERM) in Providence, Rhode Island, this volume features submissions from several of the working groups as well as contributions from the wider community. The volume is suitable for researchers in data science in industry and academia. .
ISBN: 9783030115661
Standard No.: 10.1007/978-3-030-11566-1doiSubjects--Topical Terms:
1253519
Computer science—Mathematics.
LC Class. No.: QA76.9.M35
Dewey Class. No.: 004.0151
Research in Data Science
LDR
:04296nam a22003975i 4500
001
1013004
003
DE-He213
005
20200703070039.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783030115661
$9
978-3-030-11566-1
024
7
$a
10.1007/978-3-030-11566-1
$2
doi
035
$a
978-3-030-11566-1
050
4
$a
QA76.9.M35
072
7
$a
PBWH
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PBWH
$2
thema
082
0 4
$a
004.0151
$2
23
245
1 0
$a
Research in Data Science
$h
[electronic resource] /
$c
edited by Ellen Gasparovic, Carlotta Domeniconi.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
XIV, 297 p. 120 illus., 106 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Association for Women in Mathematics Series,
$x
2364-5733 ;
$v
17
505
0
$a
Preface -- N. Durgin, R. Grotheer, C. Huang, S. Li, A. Ma, D. Needell, and J. Qin: Sparse Randomized Kaczmarz for Support Recovery of Jointly Sparse Corrupted Multiple Measurement Vectors -- P. Mani, M. Vazquez, J. R. Metcalf-Burton, C. Domeniconi, H. Fairbanks, G. Bal, E. Beer, and S. Tari: The Hubness Phenomenon in High Dimensional Spaces -- F. P. Medina, L. Ness, M. Weber, and K. Y. Djima: Heuristic Framework for Multiscale Testing of the Multi-Manifold Hypothesis -- K. Leonard, Y. Zhou, X. Wang, and G. Heo: High-dimensional Multiple Scaled Data Analysis of Obstructive Sleep Apnea Study with Interdisciplinary Endeavor -- E. Munch and A. Stefanou: The L(infinity)-Cophenetic Metric for Phylogenetic Trees as an Interleaving Distance -- L. Ness: Inference of a Dyadic Measure and its Simplicia Geometry from Binary Feature Data and Application to Data Quality -- A. Genctav, M. Genctav, and S. Tari: A Non-local Measure for Mesh Saliency via Feature Space Reduction -- F. Seeger, A. Little, Y. Chen, T. Woolf, H. Cheng, and J. C. Mitchell: Feature Design for Protein Interface Hotspots using KFC2 and Rosetta -- R. Aroutiounian, K. Leonard, R. Moreno, R. Teufel: Geometry-Based Classification for Automated Schizophrenia Diagnosis -- N. Durgin, R. Grotheer, C. Huang, S. Li, A. Ma, D. Needell, and J. Qin: Compressed Anomaly Detection with Multiple Mixed Observations -- A. Grim, B. Iskra, N. Ju, A. Kryshchenko, F. P. Medina, L. Ness, M. Ngamini, M. Owen, R. Paffenroth, and S. Tang: Analysis of Simulated Crowd Flow Exit Data: Visualization, Panic Detection, and Exit Time Convergence, Attribution and Estimation -- V. Adanova and S. Tari: A Data Driven Modeling of Ornaments. .
520
$a
This edited volume on data science features a variety of research ranging from theoretical to applied and computational topics. Aiming to establish the important connection between mathematics and data science, this book addresses cutting edge problems in predictive modeling, multi-scale representation and feature selection, statistical and topological learning, and related areas. Contributions study topics such as the hubness phenomenon in high-dimensional spaces, the use of a heuristic framework for testing the multi-manifold hypothesis for high-dimensional data, the investigation of interdisciplinary approaches to multi-dimensional obstructive sleep apnea patient data, and the inference of a dyadic measure and its simplicial geometry from binary feature data. Based on the first Women in Data Science and Mathematics (WiSDM) Research Collaboration Workshop that took place in 2017 at the Institute for Compuational and Experimental Research in Mathematics (ICERM) in Providence, Rhode Island, this volume features submissions from several of the working groups as well as contributions from the wider community. The volume is suitable for researchers in data science in industry and academia. .
650
0
$a
Computer science—Mathematics.
$3
1253519
650
0
$a
Computer mathematics.
$3
1199796
650
1 4
$a
Mathematical Applications in Computer Science.
$3
815331
700
1
$a
Gasparovic, Ellen.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1307317
700
1
$a
Domeniconi, Carlotta.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1307318
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030115654
776
0 8
$i
Printed edition:
$z
9783030115678
830
0
$a
Association for Women in Mathematics Series,
$x
2364-5733 ;
$v
1
$3
1260936
856
4 0
$u
https://doi.org/10.1007/978-3-030-11566-1
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入