語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Applying Machine Learning for Automa...
~
Pham, Thuy T.
Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings/ by Thuy T. Pham.
作者:
Pham, Thuy T.
面頁冊數:
XV, 107 p. 35 illus., 32 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Biomedical engineering. -
電子資源:
https://doi.org/10.1007/978-3-319-98675-3
ISBN:
9783319986753
Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings
Pham, Thuy T.
Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings
[electronic resource] /by Thuy T. Pham. - 1st ed. 2019. - XV, 107 p. 35 illus., 32 illus. in color.online resource. - Springer Theses, Recognizing Outstanding Ph.D. Research,2190-5053. - Springer Theses, Recognizing Outstanding Ph.D. Research,.
Introduction -- Background -- Algorithms -- Point Anomaly Detection: Application to Freezing of Gait Monitoring -- Collective Anomaly Detection: Application to Respiratory Artefact Removals -- Spike Sorting: Application to Motor Unit Action Potential Discrimination -- Conclusion .
This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.
ISBN: 9783319986753
Standard No.: 10.1007/978-3-319-98675-3doiSubjects--Topical Terms:
588770
Biomedical engineering.
LC Class. No.: R856-857
Dewey Class. No.: 610.28
Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings
LDR
:02536nam a22004335i 4500
001
1013219
003
DE-He213
005
20200706030700.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783319986753
$9
978-3-319-98675-3
024
7
$a
10.1007/978-3-319-98675-3
$2
doi
035
$a
978-3-319-98675-3
050
4
$a
R856-857
050
4
$a
HC79.E5
050
4
$a
GE220
072
7
$a
MQW
$2
bicssc
072
7
$a
TEC059000
$2
bisacsh
072
7
$a
MQW
$2
thema
082
0 4
$a
610.28
$2
23
100
1
$a
Pham, Thuy T.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1307521
245
1 0
$a
Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings
$h
[electronic resource] /
$c
by Thuy T. Pham.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
XV, 107 p. 35 illus., 32 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Theses, Recognizing Outstanding Ph.D. Research,
$x
2190-5053
505
0
$a
Introduction -- Background -- Algorithms -- Point Anomaly Detection: Application to Freezing of Gait Monitoring -- Collective Anomaly Detection: Application to Respiratory Artefact Removals -- Spike Sorting: Application to Motor Unit Action Potential Discrimination -- Conclusion .
520
$a
This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.
650
0
$a
Biomedical engineering.
$3
588770
650
0
$a
Data mining.
$3
528622
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Bioinformatics.
$3
583857
650
1 4
$a
Biomedical Engineering and Bioengineering.
$3
1211019
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Computational Intelligence.
$3
768837
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319986746
776
0 8
$i
Printed edition:
$z
9783319986760
776
0 8
$i
Printed edition:
$z
9783030075187
830
0
$a
Springer Theses, Recognizing Outstanding Ph.D. Research,
$x
2190-5053
$3
1253569
856
4 0
$u
https://doi.org/10.1007/978-3-319-98675-3
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入