語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Real-time Knowledge-based Fuzzy Logi...
~
Sidhu, Amandeep S.
Real-time Knowledge-based Fuzzy Logic Model for Soft Tissue Deformation
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Real-time Knowledge-based Fuzzy Logic Model for Soft Tissue Deformation/ by Joey Sing Yee Tan, Amandeep S. Sidhu.
作者:
Tan, Joey Sing Yee.
其他作者:
Sidhu, Amandeep S.
面頁冊數:
IX, 88 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Computational intelligence. -
電子資源:
https://doi.org/10.1007/978-3-030-15585-8
ISBN:
9783030155858
Real-time Knowledge-based Fuzzy Logic Model for Soft Tissue Deformation
Tan, Joey Sing Yee.
Real-time Knowledge-based Fuzzy Logic Model for Soft Tissue Deformation
[electronic resource] /by Joey Sing Yee Tan, Amandeep S. Sidhu. - 1st ed. 2019. - IX, 88 p.online resource. - Data, Semantics and Cloud Computing,8322524-6593 ;. - Data, Semantics and Cloud Computing,759.
List of Figures -- List of Tables -- Chapter 1. Introduction -- Chapter 2. Background -- Chapter 3. Methodology -- Chapter 4. Fuzzy Inference System, etc.
This book provides a real-time and knowledge-based fuzzy logic model for soft tissue deformation. The demand for surgical simulation continues to grow, as there is a major bottleneck in surgical simulation designation and every patient is unique. Deformable models, the core of surgical simulation, play a crucial role in surgical simulation designation. Accordingly, this book (1) presents an improved mass spring model to simulate soft tissue deformation for surgery simulation; (2) ensures the accuracy of simulation by redesigning the underlying Mass Spring Model (MSM) for liver deformation, using three different fuzzy knowledge-based approaches to determine the parameters of the MSM; (3) demonstrates how data in Central Processing Unit (CPU) memory can be structured to allow coalescing according to a set of Graphical Processing Unit (GPU)-dependent alignment rules; and (4) implements heterogeneous parallel programming for the distribution of grid threats for Computer Unified Device Architecture (CUDA)-based GPU computing. .
ISBN: 9783030155858
Standard No.: 10.1007/978-3-030-15585-8doiSubjects--Topical Terms:
568984
Computational intelligence.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Real-time Knowledge-based Fuzzy Logic Model for Soft Tissue Deformation
LDR
:02648nam a22004095i 4500
001
1013244
003
DE-He213
005
20200704234954.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783030155858
$9
978-3-030-15585-8
024
7
$a
10.1007/978-3-030-15585-8
$2
doi
035
$a
978-3-030-15585-8
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Tan, Joey Sing Yee.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1307543
245
1 0
$a
Real-time Knowledge-based Fuzzy Logic Model for Soft Tissue Deformation
$h
[electronic resource] /
$c
by Joey Sing Yee Tan, Amandeep S. Sidhu.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
IX, 88 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Data, Semantics and Cloud Computing,
$x
2524-6593 ;
$v
832
505
0
$a
List of Figures -- List of Tables -- Chapter 1. Introduction -- Chapter 2. Background -- Chapter 3. Methodology -- Chapter 4. Fuzzy Inference System, etc.
520
$a
This book provides a real-time and knowledge-based fuzzy logic model for soft tissue deformation. The demand for surgical simulation continues to grow, as there is a major bottleneck in surgical simulation designation and every patient is unique. Deformable models, the core of surgical simulation, play a crucial role in surgical simulation designation. Accordingly, this book (1) presents an improved mass spring model to simulate soft tissue deformation for surgery simulation; (2) ensures the accuracy of simulation by redesigning the underlying Mass Spring Model (MSM) for liver deformation, using three different fuzzy knowledge-based approaches to determine the parameters of the MSM; (3) demonstrates how data in Central Processing Unit (CPU) memory can be structured to allow coalescing according to a set of Graphical Processing Unit (GPU)-dependent alignment rules; and (4) implements heterogeneous parallel programming for the distribution of grid threats for Computer Unified Device Architecture (CUDA)-based GPU computing. .
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Biomedical engineering.
$3
588770
650
0
$a
Surgery.
$3
644132
650
0
$a
Regenerative medicine.
$3
782729
650
0
$a
Tissue engineering.
$3
558489
650
1 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Biomedical Engineering and Bioengineering.
$3
1211019
650
2 4
$a
Regenerative Medicine/Tissue Engineering.
$3
1020916
700
1
$a
Sidhu, Amandeep S.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1074787
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030155841
776
0 8
$i
Printed edition:
$z
9783030155865
776
0 8
$i
Printed edition:
$z
9783030155872
830
0
$a
Data, Semantics and Cloud Computing,
$x
2524-6593 ;
$v
759
$3
1280377
856
4 0
$u
https://doi.org/10.1007/978-3-030-15585-8
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入