語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Analysis of Doubly Truncated Data = ...
~
SpringerLink (Online service)
Analysis of Doubly Truncated Data = An Introduction /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Analysis of Doubly Truncated Data/ by Achim Dörre, Takeshi Emura.
其他題名:
An Introduction /
作者:
Dörre, Achim.
其他作者:
Emura, Takeshi.
面頁冊數:
XVI, 109 p. 38 illus., 10 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Statistics . -
電子資源:
https://doi.org/10.1007/978-981-13-6241-5
ISBN:
9789811362415
Analysis of Doubly Truncated Data = An Introduction /
Dörre, Achim.
Analysis of Doubly Truncated Data
An Introduction /[electronic resource] :by Achim Dörre, Takeshi Emura. - 1st ed. 2019. - XVI, 109 p. 38 illus., 10 illus. in color.online resource. - JSS Research Series in Statistics,2364-0057. - JSS Research Series in Statistics,.
Chapter 1: Introduction to double-truncation -- Chapter 2: Parametric inference under special exponential family -- Chapter 3: Parametric inference under location-scale family -- Chapter 4: Bayes inference -- Chapter 5: Nonparametric inference -- Chapter 6: Linear regression -- Appendix A: Data (if German company data are available) -- Appendix B: R codes for inference under exponential family -- Appendix C: R codes for inference under location-scale family -- Appendix D: R codes for Bayes inference -- Appendix E: R codes for linear regression.
This book introduces readers to statistical methodologies used to analyze doubly truncated data. The first book exclusively dedicated to the topic, it provides likelihood-based methods, Bayesian methods, non-parametric methods, and linear regression methods. These procedures can be used to effectively analyze continuous data, especially survival data arising in biostatistics and economics. Because truncation is a phenomenon that is often encountered in non-experimental studies, the methods presented here can be applied to many branches of science. The book provides R codes for most of the statistical methods, to help readers analyze their data. Given its scope, the book is ideally suited as a textbook for students of statistics, mathematics, econometrics, and other fields.
ISBN: 9789811362415
Standard No.: 10.1007/978-981-13-6241-5doiSubjects--Topical Terms:
1253516
Statistics .
LC Class. No.: QA276-280
Dewey Class. No.: 519.5
Analysis of Doubly Truncated Data = An Introduction /
LDR
:02710nam a22003975i 4500
001
1013511
003
DE-He213
005
20200704212647.0
007
cr nn 008mamaa
008
210106s2019 si | s |||| 0|eng d
020
$a
9789811362415
$9
978-981-13-6241-5
024
7
$a
10.1007/978-981-13-6241-5
$2
doi
035
$a
978-981-13-6241-5
050
4
$a
QA276-280
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.5
$2
23
100
1
$a
Dörre, Achim.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1307773
245
1 0
$a
Analysis of Doubly Truncated Data
$h
[electronic resource] :
$b
An Introduction /
$c
by Achim Dörre, Takeshi Emura.
250
$a
1st ed. 2019.
264
1
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
XVI, 109 p. 38 illus., 10 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
JSS Research Series in Statistics,
$x
2364-0057
505
0
$a
Chapter 1: Introduction to double-truncation -- Chapter 2: Parametric inference under special exponential family -- Chapter 3: Parametric inference under location-scale family -- Chapter 4: Bayes inference -- Chapter 5: Nonparametric inference -- Chapter 6: Linear regression -- Appendix A: Data (if German company data are available) -- Appendix B: R codes for inference under exponential family -- Appendix C: R codes for inference under location-scale family -- Appendix D: R codes for Bayes inference -- Appendix E: R codes for linear regression.
520
$a
This book introduces readers to statistical methodologies used to analyze doubly truncated data. The first book exclusively dedicated to the topic, it provides likelihood-based methods, Bayesian methods, non-parametric methods, and linear regression methods. These procedures can be used to effectively analyze continuous data, especially survival data arising in biostatistics and economics. Because truncation is a phenomenon that is often encountered in non-experimental studies, the methods presented here can be applied to many branches of science. The book provides R codes for most of the statistical methods, to help readers analyze their data. Given its scope, the book is ideally suited as a textbook for students of statistics, mathematics, econometrics, and other fields.
650
0
$a
Statistics .
$3
1253516
650
0
$a
Biostatistics.
$3
783654
650
1 4
$a
Statistical Theory and Methods.
$3
671396
650
2 4
$a
Applied Statistics.
$3
1205141
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
669775
700
1
$a
Emura, Takeshi.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1202727
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9789811362408
776
0 8
$i
Printed edition:
$z
9789811362422
830
0
$a
JSS Research Series in Statistics,
$x
2364-0057
$3
1255493
856
4 0
$u
https://doi.org/10.1007/978-981-13-6241-5
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入