語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Quantum Physics = States, Observable...
~
Mainland, G. Bruce.
Quantum Physics = States, Observables and Their Time Evolution /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Quantum Physics/ by Arno Bohm, Piotr Kielanowski, G. Bruce Mainland.
其他題名:
States, Observables and Their Time Evolution /
作者:
Bohm, Arno.
其他作者:
Kielanowski, Piotr.
面頁冊數:
IX, 353 p. 48 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Quantum physics. -
電子資源:
https://doi.org/10.1007/978-94-024-1760-9
ISBN:
9789402417609
Quantum Physics = States, Observables and Their Time Evolution /
Bohm, Arno.
Quantum Physics
States, Observables and Their Time Evolution /[electronic resource] :by Arno Bohm, Piotr Kielanowski, G. Bruce Mainland. - 1st ed. 2019. - IX, 353 p. 48 illus.online resource.
Quantum Harmonic Oscillator -- Angular Momentum -- Combinations of Quantum Physical Systems -- Stationary Perturbation Theory -- Time Evolution of Quantum Systems -- Epilogue -- Appendix: Mathematical Preliminaries -- Index.
This is an introductory graduate course on quantum mechanics, which is presented in its general form by stressing the operator approach. Representations of the algebra of the harmonic oscillator and of the algebra of angular momentum are determined in chapters 1 and 2 respectively. The algebra of angular momentum is enlarged by adding the position operator so that the algebra can be used to describe rigid and non-rigid rotating molecules. The combination of quantum physical systems using direct-product spaces is discussed in chapter 3. The theory is used to describe a vibrating rotator, and the theoretical predictions are then compared with data for a vibrating and rotating diatomic molecule. The formalism of first- and second-order non-degenerate perturbation theory and first-order degenerate perturbation theory are derived in chapter 4. Time development is described in chapter 5 using either the Schroedinger equation of motion or the Heisenberg’s one. An elementary mathematical tutorial forms a useful appendix for the readers who don’t have prior knowledge of the general mathematical structure of quantum mechanics.
ISBN: 9789402417609
Standard No.: 10.1007/978-94-024-1760-9doiSubjects--Topical Terms:
1179090
Quantum physics.
LC Class. No.: QC173.96-174.52
Dewey Class. No.: 530.12
Quantum Physics = States, Observables and Their Time Evolution /
LDR
:02684nam a22003855i 4500
001
1013737
003
DE-He213
005
20200703010153.0
007
cr nn 008mamaa
008
210106s2019 ne | s |||| 0|eng d
020
$a
9789402417609
$9
978-94-024-1760-9
024
7
$a
10.1007/978-94-024-1760-9
$2
doi
035
$a
978-94-024-1760-9
050
4
$a
QC173.96-174.52
072
7
$a
PHQ
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
072
7
$a
PHQ
$2
thema
082
0 4
$a
530.12
$2
23
100
1
$a
Bohm, Arno.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1307984
245
1 0
$a
Quantum Physics
$h
[electronic resource] :
$b
States, Observables and Their Time Evolution /
$c
by Arno Bohm, Piotr Kielanowski, G. Bruce Mainland.
250
$a
1st ed. 2019.
264
1
$a
Dordrecht :
$b
Springer Netherlands :
$b
Imprint: Springer,
$c
2019.
300
$a
IX, 353 p. 48 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Quantum Harmonic Oscillator -- Angular Momentum -- Combinations of Quantum Physical Systems -- Stationary Perturbation Theory -- Time Evolution of Quantum Systems -- Epilogue -- Appendix: Mathematical Preliminaries -- Index.
520
$a
This is an introductory graduate course on quantum mechanics, which is presented in its general form by stressing the operator approach. Representations of the algebra of the harmonic oscillator and of the algebra of angular momentum are determined in chapters 1 and 2 respectively. The algebra of angular momentum is enlarged by adding the position operator so that the algebra can be used to describe rigid and non-rigid rotating molecules. The combination of quantum physical systems using direct-product spaces is discussed in chapter 3. The theory is used to describe a vibrating rotator, and the theoretical predictions are then compared with data for a vibrating and rotating diatomic molecule. The formalism of first- and second-order non-degenerate perturbation theory and first-order degenerate perturbation theory are derived in chapter 4. Time development is described in chapter 5 using either the Schroedinger equation of motion or the Heisenberg’s one. An elementary mathematical tutorial forms a useful appendix for the readers who don’t have prior knowledge of the general mathematical structure of quantum mechanics.
650
0
$a
Quantum physics.
$3
1179090
650
0
$a
Physics.
$3
564049
650
0
$a
Atoms.
$3
596866
650
1 4
$a
Quantum Physics.
$3
671960
650
2 4
$a
Mathematical Methods in Physics.
$3
670749
650
2 4
$a
Atomic, Molecular, Optical and Plasma Physics.
$3
782572
700
1
$a
Kielanowski, Piotr.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1069812
700
1
$a
Mainland, G. Bruce.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1307985
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9789402417586
776
0 8
$i
Printed edition:
$z
9789402417593
856
4 0
$u
https://doi.org/10.1007/978-94-024-1760-9
912
$a
ZDB-2-PHA
912
$a
ZDB-2-SXP
950
$a
Physics and Astronomy (SpringerNature-11651)
950
$a
Physics and Astronomy (R0) (SpringerNature-43715)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入