語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Clustering Methods for Big Data Anal...
~
Nasraoui, Olfa.
Clustering Methods for Big Data Analytics = Techniques, Toolboxes and Applications /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Clustering Methods for Big Data Analytics/ edited by Olfa Nasraoui, Chiheb-Eddine Ben N'Cir.
其他題名:
Techniques, Toolboxes and Applications /
其他作者:
Nasraoui, Olfa.
面頁冊數:
IX, 187 p. 63 illus., 31 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Electrical engineering. -
電子資源:
https://doi.org/10.1007/978-3-319-97864-2
ISBN:
9783319978642
Clustering Methods for Big Data Analytics = Techniques, Toolboxes and Applications /
Clustering Methods for Big Data Analytics
Techniques, Toolboxes and Applications /[electronic resource] :edited by Olfa Nasraoui, Chiheb-Eddine Ben N'Cir. - 1st ed. 2019. - IX, 187 p. 63 illus., 31 illus. in color.online resource. - Unsupervised and Semi-Supervised Learning,2522-848X. - Unsupervised and Semi-Supervised Learning,.
Introduction -- Clustering large scale data -- Clustering heterogeneous data -- Distributed clustering methods -- Clustering structured and unstructured data -- Clustering and unsupervised learning for deep learning -- Deep learning methods for clustering -- Clustering high speed cloud, grid, and streaming data -- Extension of partitioning, model based, density based, grid based, fuzzy and evolutionary clustering methods for big data analysis -- Large documents and textual data clustering -- Applications of big data clustering methods -- Clustering multimedia and multi-structured data -- Large-scale recommendation systems and social media systems -- Clustering multimedia and multi-structured data -- Real life applications of big data clustering -- Validation measures for big data clustering methods -- Conclusion.
This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation. .
ISBN: 9783319978642
Standard No.: 10.1007/978-3-319-97864-2doiSubjects--Topical Terms:
596380
Electrical engineering.
LC Class. No.: TK1-9971
Dewey Class. No.: 621.382
Clustering Methods for Big Data Analytics = Techniques, Toolboxes and Applications /
LDR
:03162nam a22004095i 4500
001
1014068
003
DE-He213
005
20200703145436.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783319978642
$9
978-3-319-97864-2
024
7
$a
10.1007/978-3-319-97864-2
$2
doi
035
$a
978-3-319-97864-2
050
4
$a
TK1-9971
072
7
$a
TJK
$2
bicssc
072
7
$a
TEC041000
$2
bisacsh
072
7
$a
TJK
$2
thema
082
0 4
$a
621.382
$2
23
245
1 0
$a
Clustering Methods for Big Data Analytics
$h
[electronic resource] :
$b
Techniques, Toolboxes and Applications /
$c
edited by Olfa Nasraoui, Chiheb-Eddine Ben N'Cir.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
IX, 187 p. 63 illus., 31 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Unsupervised and Semi-Supervised Learning,
$x
2522-848X
505
0
$a
Introduction -- Clustering large scale data -- Clustering heterogeneous data -- Distributed clustering methods -- Clustering structured and unstructured data -- Clustering and unsupervised learning for deep learning -- Deep learning methods for clustering -- Clustering high speed cloud, grid, and streaming data -- Extension of partitioning, model based, density based, grid based, fuzzy and evolutionary clustering methods for big data analysis -- Large documents and textual data clustering -- Applications of big data clustering methods -- Clustering multimedia and multi-structured data -- Large-scale recommendation systems and social media systems -- Clustering multimedia and multi-structured data -- Real life applications of big data clustering -- Validation measures for big data clustering methods -- Conclusion.
520
$a
This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation. .
650
0
$a
Electrical engineering.
$3
596380
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Data mining.
$3
528622
650
0
$a
Big data.
$3
981821
650
0
$a
Pattern recognition.
$3
1253525
650
1 4
$a
Communications Engineering, Networks.
$3
669809
650
2 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Big Data/Analytics.
$3
1106909
650
2 4
$a
Pattern Recognition.
$3
669796
700
1
$a
Nasraoui, Olfa.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1308316
700
1
$a
Ben N'Cir, Chiheb-Eddine.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1308317
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319978635
776
0 8
$i
Printed edition:
$z
9783319978659
776
0 8
$i
Printed edition:
$z
9783030074197
830
0
$a
Unsupervised and Semi-Supervised Learning,
$x
2522-848X
$3
1304411
856
4 0
$u
https://doi.org/10.1007/978-3-319-97864-2
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入