Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Complex Non-Kähler Geometry = Cetrar...
~
Dinew, Sławomir.
Complex Non-Kähler Geometry = Cetraro, Italy 2018 /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Complex Non-Kähler Geometry/ by Sławomir Dinew, Sebastien Picard, Andrei Teleman, Alberto Verjovsky ; edited by Daniele Angella, Leandro Arosio, Eleonora Di Nezza.
Reminder of title:
Cetraro, Italy 2018 /
Author:
Dinew, Sławomir.
other author:
Picard, Sebastien.
Description:
XV, 242 p. 38 illus., 25 illus. in color.online resource. :
Contained By:
Springer Nature eBook
Subject:
Differential geometry. -
Online resource:
https://doi.org/10.1007/978-3-030-25883-2
ISBN:
9783030258832
Complex Non-Kähler Geometry = Cetraro, Italy 2018 /
Dinew, Sławomir.
Complex Non-Kähler Geometry
Cetraro, Italy 2018 /[electronic resource] :by Sławomir Dinew, Sebastien Picard, Andrei Teleman, Alberto Verjovsky ; edited by Daniele Angella, Leandro Arosio, Eleonora Di Nezza. - 1st ed. 2019. - XV, 242 p. 38 illus., 25 illus. in color.online resource. - C.I.M.E. Foundation Subseries ;2246. - C.I.M.E. Foundation Subseries ;2141.
Collecting together the lecture notes of the CIME Summer School held in Cetraro in July 2018, the aim of the book is to introduce a vast range of techniques which are useful in the investigation of complex manifolds. The school consisted of four courses, focusing on both the construction of non-Kähler manifolds and the understanding of a possible classification of complex non-Kähler manifolds. In particular, the courses by Alberto Verjovsky and Andrei Teleman introduced tools in the theory of foliations and analytic techniques for the classification of compact complex surfaces and compact Kähler manifolds, respectively. The courses by Sebastien Picard and Sławomir Dinew focused on analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-Kähler geometry.
ISBN: 9783030258832
Standard No.: 10.1007/978-3-030-25883-2doiSubjects--Topical Terms:
882213
Differential geometry.
LC Class. No.: QA641-670
Dewey Class. No.: 516.36
Complex Non-Kähler Geometry = Cetraro, Italy 2018 /
LDR
:02357nam a22003975i 4500
001
1014505
003
DE-He213
005
20200706210334.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783030258832
$9
978-3-030-25883-2
024
7
$a
10.1007/978-3-030-25883-2
$2
doi
035
$a
978-3-030-25883-2
050
4
$a
QA641-670
072
7
$a
PBMP
$2
bicssc
072
7
$a
MAT012030
$2
bisacsh
072
7
$a
PBMP
$2
thema
082
0 4
$a
516.36
$2
23
100
1
$a
Dinew, Sławomir.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1308725
245
1 0
$a
Complex Non-Kähler Geometry
$h
[electronic resource] :
$b
Cetraro, Italy 2018 /
$c
by Sławomir Dinew, Sebastien Picard, Andrei Teleman, Alberto Verjovsky ; edited by Daniele Angella, Leandro Arosio, Eleonora Di Nezza.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
XV, 242 p. 38 illus., 25 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
C.I.M.E. Foundation Subseries ;
$v
2246
520
$a
Collecting together the lecture notes of the CIME Summer School held in Cetraro in July 2018, the aim of the book is to introduce a vast range of techniques which are useful in the investigation of complex manifolds. The school consisted of four courses, focusing on both the construction of non-Kähler manifolds and the understanding of a possible classification of complex non-Kähler manifolds. In particular, the courses by Alberto Verjovsky and Andrei Teleman introduced tools in the theory of foliations and analytic techniques for the classification of compact complex surfaces and compact Kähler manifolds, respectively. The courses by Sebastien Picard and Sławomir Dinew focused on analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-Kähler geometry.
650
0
$a
Differential geometry.
$3
882213
650
0
$a
Functions of complex variables.
$3
528649
650
0
$a
Manifolds (Mathematics).
$3
1051266
650
0
$a
Complex manifolds.
$3
676705
650
1 4
$a
Differential Geometry.
$3
671118
650
2 4
$a
Several Complex Variables and Analytic Spaces.
$3
672032
650
2 4
$a
Manifolds and Cell Complexes (incl. Diff.Topology).
$3
668590
700
1
$a
Picard, Sebastien.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1308726
700
1
$a
Teleman, Andrei.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1308727
700
1
$a
Verjovsky, Alberto.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1308728
700
1
$a
Angella, Daniele.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1022549
700
1
$a
Arosio, Leandro.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1308729
700
1
$a
Di Nezza, Eleonora.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1308730
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030258825
776
0 8
$i
Printed edition:
$z
9783030258849
830
0
$a
C.I.M.E. Foundation Subseries ;
$v
2141
$3
1255126
856
4 0
$u
https://doi.org/10.1007/978-3-030-25883-2
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
912
$a
ZDB-2-LNM
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login