語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Disease Resistance in Crop Plants = ...
~
SpringerLink (Online service)
Disease Resistance in Crop Plants = Molecular, Genetic and Genomic Perspectives /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Disease Resistance in Crop Plants/ edited by Shabir Hussain Wani.
其他題名:
Molecular, Genetic and Genomic Perspectives /
其他作者:
Wani, Shabir Hussain.
面頁冊數:
XII, 307 p. 15 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Plant genetics. -
電子資源:
https://doi.org/10.1007/978-3-030-20728-1
ISBN:
9783030207281
Disease Resistance in Crop Plants = Molecular, Genetic and Genomic Perspectives /
Disease Resistance in Crop Plants
Molecular, Genetic and Genomic Perspectives /[electronic resource] :edited by Shabir Hussain Wani. - 1st ed. 2019. - XII, 307 p. 15 illus. in color.online resource.
Foreword -- Biotic and abiotic stresses, impact on plants and their response -- Cloning of genes underlying quantitative resistance for plant disease control -- CRISPR based tools for crop improvement: Understanding the plant pathogen interaction -- Disease resistance in wheat: present status and future prospects -- Rice, Marker-assisted breeding and Disease Resistance -- Genome Wide Association Study (GWAS) on Disease Resistance in Maize -- Molecular breeding approaches for disease resistance in sugarcane -- Molecular breeding for resistance to economically important diseases of Pulses -- Molecular Breeding for Resistance to Economically Important Diseases of Fodder Oat -- Charcoal rot resistance in soybean-current understanding and future perspectives -- Barley, Disease Resistance, and Molecular breeding approaches -- Index.
Human population is escalating at an enormous pace and is estimated to reach 9.7 billion by 2050. As a result, there will be an increase in demand for agricultural production by 60–110% between the years 2005 and 2050 at the global level; the number will be even more drastic in the developing world. Pathogens, animals, and weeds are altogether responsible for between 20 to 40 % of global agricultural productivity decrease. As such, managing disease development in plants continues to be a major strategy to ensure adequate food supply for the world. Accordingly, both the public and private sectors are moving to harness the tools and paradigms that promise resistance against pests and diseases. While the next generation of disease resistance research is progressing, maximum disease resistance traits are expected to be polygenic in nature and controlled by selective genes positioned at putative quantitative trait loci (QTLs). It has also been realized that sources of resistance are generally found in wild relatives or cultivars of lesser agronomic significance. However, introgression of disease resistance traits into commercial crop varieties typically involves many generations of backcrossing to transmit a promising genotype. Molecular marker-assisted breeding (MAB) has been found to facilitate the pre-selection of traits even prior to their expression. To date, researchers have utilized disease resistance genes (R-genes) in different crops including cereals, pulses, and oilseeds and other economically important plants, to improve productivity. Interestingly, comparison of different R genes that empower plants to resist an array of pathogens has led to the realization that the proteins encoded by these genes have numerous features in common. The above observation therefore suggests that plants may have co-evolved signal transduction pathways to adopt resistance against a wide range of divergent pathogens. A better understanding of the molecular mechanisms necessary for pathogen identification and a thorough dissection of the cellular responses to biotic stresses will certainly open new vistas for sustainable crop disease management. This book summarizes the recent advances in molecular and genetic techniques that have been successfully applied to impart disease resistance for plants and crops. It integrates the contributions from plant scientists targeting disease resistance mechanisms using molecular, genetic, and genomic approaches. This collection therefore serves as a reference source for scientists, academicians and post graduate students interested in or are actively engaged in dissecting disease resistance in plants using advanced genetic tools.
ISBN: 9783030207281
Standard No.: 10.1007/978-3-030-20728-1doiSubjects--Topical Terms:
743629
Plant genetics.
LC Class. No.: QH433
Dewey Class. No.: 581.35
Disease Resistance in Crop Plants = Molecular, Genetic and Genomic Perspectives /
LDR
:04954nam a22004095i 4500
001
1014590
003
DE-He213
005
20200701173521.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783030207281
$9
978-3-030-20728-1
024
7
$a
10.1007/978-3-030-20728-1
$2
doi
035
$a
978-3-030-20728-1
050
4
$a
QH433
072
7
$a
PST
$2
bicssc
072
7
$a
SCI011000
$2
bisacsh
072
7
$a
PST
$2
thema
072
7
$a
PSAK
$2
thema
082
0 4
$a
581.35
$2
23
245
1 0
$a
Disease Resistance in Crop Plants
$h
[electronic resource] :
$b
Molecular, Genetic and Genomic Perspectives /
$c
edited by Shabir Hussain Wani.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
XII, 307 p. 15 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Foreword -- Biotic and abiotic stresses, impact on plants and their response -- Cloning of genes underlying quantitative resistance for plant disease control -- CRISPR based tools for crop improvement: Understanding the plant pathogen interaction -- Disease resistance in wheat: present status and future prospects -- Rice, Marker-assisted breeding and Disease Resistance -- Genome Wide Association Study (GWAS) on Disease Resistance in Maize -- Molecular breeding approaches for disease resistance in sugarcane -- Molecular breeding for resistance to economically important diseases of Pulses -- Molecular Breeding for Resistance to Economically Important Diseases of Fodder Oat -- Charcoal rot resistance in soybean-current understanding and future perspectives -- Barley, Disease Resistance, and Molecular breeding approaches -- Index.
520
$a
Human population is escalating at an enormous pace and is estimated to reach 9.7 billion by 2050. As a result, there will be an increase in demand for agricultural production by 60–110% between the years 2005 and 2050 at the global level; the number will be even more drastic in the developing world. Pathogens, animals, and weeds are altogether responsible for between 20 to 40 % of global agricultural productivity decrease. As such, managing disease development in plants continues to be a major strategy to ensure adequate food supply for the world. Accordingly, both the public and private sectors are moving to harness the tools and paradigms that promise resistance against pests and diseases. While the next generation of disease resistance research is progressing, maximum disease resistance traits are expected to be polygenic in nature and controlled by selective genes positioned at putative quantitative trait loci (QTLs). It has also been realized that sources of resistance are generally found in wild relatives or cultivars of lesser agronomic significance. However, introgression of disease resistance traits into commercial crop varieties typically involves many generations of backcrossing to transmit a promising genotype. Molecular marker-assisted breeding (MAB) has been found to facilitate the pre-selection of traits even prior to their expression. To date, researchers have utilized disease resistance genes (R-genes) in different crops including cereals, pulses, and oilseeds and other economically important plants, to improve productivity. Interestingly, comparison of different R genes that empower plants to resist an array of pathogens has led to the realization that the proteins encoded by these genes have numerous features in common. The above observation therefore suggests that plants may have co-evolved signal transduction pathways to adopt resistance against a wide range of divergent pathogens. A better understanding of the molecular mechanisms necessary for pathogen identification and a thorough dissection of the cellular responses to biotic stresses will certainly open new vistas for sustainable crop disease management. This book summarizes the recent advances in molecular and genetic techniques that have been successfully applied to impart disease resistance for plants and crops. It integrates the contributions from plant scientists targeting disease resistance mechanisms using molecular, genetic, and genomic approaches. This collection therefore serves as a reference source for scientists, academicians and post graduate students interested in or are actively engaged in dissecting disease resistance in plants using advanced genetic tools.
650
0
$a
Plant genetics.
$3
743629
650
0
$a
Plant breeding.
$3
568050
650
0
$a
Agriculture.
$3
660421
650
0
$a
Plant physiology.
$3
889548
650
0
$a
Plant pathology.
$3
1183408
650
1 4
$a
Plant Genetics and Genomics.
$3
1171617
650
2 4
$a
Plant Breeding/Biotechnology.
$3
677715
650
2 4
$a
Plant Physiology.
$3
579850
650
2 4
$a
Plant Pathology.
$3
668902
700
1
$a
Wani, Shabir Hussain.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1205749
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030207274
776
0 8
$i
Printed edition:
$z
9783030207298
776
0 8
$i
Printed edition:
$z
9783030207304
856
4 0
$u
https://doi.org/10.1007/978-3-030-20728-1
912
$a
ZDB-2-SBL
912
$a
ZDB-2-SXB
950
$a
Biomedical and Life Sciences (SpringerNature-11642)
950
$a
Biomedical and Life Sciences (R0) (SpringerNature-43708)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入