語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Mordell–Weil Lattices
~
Shioda, Tetsuji.
Mordell–Weil Lattices
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Mordell–Weil Lattices/ by Matthias Schütt, Tetsuji Shioda.
作者:
Schütt, Matthias.
其他作者:
Shioda, Tetsuji.
面頁冊數:
XVI, 431 p. 32 illus., 9 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Algebraic geometry. -
電子資源:
https://doi.org/10.1007/978-981-32-9301-4
ISBN:
9789813293014
Mordell–Weil Lattices
Schütt, Matthias.
Mordell–Weil Lattices
[electronic resource] /by Matthias Schütt, Tetsuji Shioda. - 1st ed. 2019. - XVI, 431 p. 32 illus., 9 illus. in color.online resource. - Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,700071-1136 ;. - Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,63.
Introduction -- Lattices -- Elliptic Curves -- Algebraic surfaces -- Elliptic surfaces -- Mordell--Weil Lattices -- Rational Elliptic Surfaces -- Rational elliptic surfaces and E8-hierarchy -- Galois Representations and Algebraic Equations -- Elliptic K3 surfaces.
This book lays out the theory of Mordell–Weil lattices, a very powerful and influential tool at the crossroads of algebraic geometry and number theory, which offers many fruitful connections to other areas of mathematics. The book presents all the ingredients entering into the theory of Mordell–Weil lattices in detail, notably, relevant portions of lattice theory, elliptic curves, and algebraic surfaces. After defining Mordell–Weil lattices, the authors provide several applications in depth. They start with the classification of rational elliptic surfaces. Then a useful connection with Galois representations is discussed. By developing the notion of excellent families, the authors are able to design many Galois representations with given Galois groups such as the Weyl groups of E6, E7 and E8. They also explain a connection to the classical topic of the 27 lines on a cubic surface. Two chapters deal with elliptic K3 surfaces, a pulsating area of recent research activity which highlights many central properties of Mordell–Weil lattices. Finally, the book turns to the rank problem—one of the key motivations for the introduction of Mordell–Weil lattices. The authors present the state of the art of the rank problem for elliptic curves both over Q and over C(t) and work out applications to the sphere packing problem. Throughout, the book includes many instructive examples illustrating the theory.
ISBN: 9789813293014
Standard No.: 10.1007/978-981-32-9301-4doiSubjects--Topical Terms:
1255324
Algebraic geometry.
LC Class. No.: QA564-609
Dewey Class. No.: 516.35
Mordell–Weil Lattices
LDR
:03167nam a22004095i 4500
001
1014955
003
DE-He213
005
20200704093440.0
007
cr nn 008mamaa
008
210106s2019 si | s |||| 0|eng d
020
$a
9789813293014
$9
978-981-32-9301-4
024
7
$a
10.1007/978-981-32-9301-4
$2
doi
035
$a
978-981-32-9301-4
050
4
$a
QA564-609
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
072
7
$a
PBMW
$2
thema
082
0 4
$a
516.35
$2
23
100
1
$a
Schütt, Matthias.
$e
editor.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1265474
245
1 0
$a
Mordell–Weil Lattices
$h
[electronic resource] /
$c
by Matthias Schütt, Tetsuji Shioda.
250
$a
1st ed. 2019.
264
1
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
XVI, 431 p. 32 illus., 9 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,
$x
0071-1136 ;
$v
70
505
0
$a
Introduction -- Lattices -- Elliptic Curves -- Algebraic surfaces -- Elliptic surfaces -- Mordell--Weil Lattices -- Rational Elliptic Surfaces -- Rational elliptic surfaces and E8-hierarchy -- Galois Representations and Algebraic Equations -- Elliptic K3 surfaces.
520
$a
This book lays out the theory of Mordell–Weil lattices, a very powerful and influential tool at the crossroads of algebraic geometry and number theory, which offers many fruitful connections to other areas of mathematics. The book presents all the ingredients entering into the theory of Mordell–Weil lattices in detail, notably, relevant portions of lattice theory, elliptic curves, and algebraic surfaces. After defining Mordell–Weil lattices, the authors provide several applications in depth. They start with the classification of rational elliptic surfaces. Then a useful connection with Galois representations is discussed. By developing the notion of excellent families, the authors are able to design many Galois representations with given Galois groups such as the Weyl groups of E6, E7 and E8. They also explain a connection to the classical topic of the 27 lines on a cubic surface. Two chapters deal with elliptic K3 surfaces, a pulsating area of recent research activity which highlights many central properties of Mordell–Weil lattices. Finally, the book turns to the rank problem—one of the key motivations for the introduction of Mordell–Weil lattices. The authors present the state of the art of the rank problem for elliptic curves both over Q and over C(t) and work out applications to the sphere packing problem. Throughout, the book includes many instructive examples illustrating the theory.
650
0
$a
Algebraic geometry.
$3
1255324
650
0
$a
Commutative algebra.
$3
672047
650
0
$a
Commutative rings.
$3
672474
650
0
$a
Algebra.
$2
gtt
$3
579870
650
0
$a
Field theory (Physics).
$3
685987
650
0
$a
Category theory (Mathematics).
$3
1255325
650
0
$a
Homological algebra.
$3
1255326
650
0
$a
Nonassociative rings.
$3
1254916
650
0
$a
Rings (Algebra).
$3
685051
650
1 4
$a
Algebraic Geometry.
$3
670184
650
2 4
$a
Commutative Rings and Algebras.
$3
672054
650
2 4
$a
Field Theory and Polynomials.
$3
672025
650
2 4
$a
Category Theory, Homological Algebra.
$3
678397
650
2 4
$a
Non-associative Rings and Algebras.
$3
672285
700
1
$a
Shioda, Tetsuji.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1309089
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9789813293007
776
0 8
$i
Printed edition:
$z
9789813293021
776
0 8
$i
Printed edition:
$z
9789813293038
830
0
$a
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,
$x
0071-1136 ;
$v
63
$3
1267908
856
4 0
$u
https://doi.org/10.1007/978-981-32-9301-4
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入