語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The Large Flux Problem to the Navier...
~
Rencławowicz, Joanna.
The Large Flux Problem to the Navier-Stokes Equations = Global Strong Solutions in Cylindrical Domains /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
The Large Flux Problem to the Navier-Stokes Equations/ by Joanna Rencławowicz, Wojciech M. Zajączkowski.
其他題名:
Global Strong Solutions in Cylindrical Domains /
作者:
Rencławowicz, Joanna.
其他作者:
Zajączkowski, Wojciech M.
面頁冊數:
VI, 179 p. 3 illus., 1 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Partial differential equations. -
電子資源:
https://doi.org/10.1007/978-3-030-32330-1
ISBN:
9783030323301
The Large Flux Problem to the Navier-Stokes Equations = Global Strong Solutions in Cylindrical Domains /
Rencławowicz, Joanna.
The Large Flux Problem to the Navier-Stokes Equations
Global Strong Solutions in Cylindrical Domains /[electronic resource] :by Joanna Rencławowicz, Wojciech M. Zajączkowski. - 1st ed. 2019. - VI, 179 p. 3 illus., 1 illus. in color.online resource. - Lecture Notes in Mathematical Fluid Mechanics,2510-1374. - Lecture Notes in Mathematical Fluid Mechanics,.
Introduction -- Notation and auxiliary results -- Energy estimate: Global weak solutions -- Local estimates for regular solutions -- Global estimates for solutions to problem on (v, p) -- Global estimates for solutions to problem on (h, q) -- Estimates for ht -- Auxiliary results: Estimates for (v, p) -- Auxiliary results: Estimates for (h, q) -- The Neumann problem (3.6) in L2-weighted spaces -- The Neumann problem (3.6) in Lp-weighted spaces -- Existence of solutions (v, p) and (h, q).
This monograph considers the motion of incompressible fluids described by the Navier-Stokes equations with large inflow and outflow, and proves the existence of global regular solutions without any restrictions on the magnitude of the initial velocity, the external force, or the flux. To accomplish this, some assumptions are necessary: The flux is close to homogeneous, and the initial velocity and the external force do not change too much along the axis of the cylinder. This is achieved by utilizing a sophisticated method of deriving energy type estimates for weak solutions and global estimates for regular solutions—an approach that is wholly unique within the existing literature on the Navier-Stokes equations. To demonstrate these results, three main steps are followed: first, the existence of weak solutions is shown; next, the conditions guaranteeing the regularity of weak solutions are presented; and, lastly, global regular solutions are proven. This volume is ideal for mathematicians whose work involves the Navier-Stokes equations, and, more broadly, researchers studying fluid mechanics.
ISBN: 9783030323301
Standard No.: 10.1007/978-3-030-32330-1doiSubjects--Topical Terms:
1102982
Partial differential equations.
LC Class. No.: QA370-380
Dewey Class. No.: 515.353
The Large Flux Problem to the Navier-Stokes Equations = Global Strong Solutions in Cylindrical Domains /
LDR
:03076nam a22003975i 4500
001
1015445
003
DE-He213
005
20200707012346.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783030323301
$9
978-3-030-32330-1
024
7
$a
10.1007/978-3-030-32330-1
$2
doi
035
$a
978-3-030-32330-1
050
4
$a
QA370-380
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
072
7
$a
PBKJ
$2
thema
082
0 4
$a
515.353
$2
23
100
1
$a
Rencławowicz, Joanna.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1309581
245
1 4
$a
The Large Flux Problem to the Navier-Stokes Equations
$h
[electronic resource] :
$b
Global Strong Solutions in Cylindrical Domains /
$c
by Joanna Rencławowicz, Wojciech M. Zajączkowski.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhäuser,
$c
2019.
300
$a
VI, 179 p. 3 illus., 1 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes in Mathematical Fluid Mechanics,
$x
2510-1374
505
0
$a
Introduction -- Notation and auxiliary results -- Energy estimate: Global weak solutions -- Local estimates for regular solutions -- Global estimates for solutions to problem on (v, p) -- Global estimates for solutions to problem on (h, q) -- Estimates for ht -- Auxiliary results: Estimates for (v, p) -- Auxiliary results: Estimates for (h, q) -- The Neumann problem (3.6) in L2-weighted spaces -- The Neumann problem (3.6) in Lp-weighted spaces -- Existence of solutions (v, p) and (h, q).
520
$a
This monograph considers the motion of incompressible fluids described by the Navier-Stokes equations with large inflow and outflow, and proves the existence of global regular solutions without any restrictions on the magnitude of the initial velocity, the external force, or the flux. To accomplish this, some assumptions are necessary: The flux is close to homogeneous, and the initial velocity and the external force do not change too much along the axis of the cylinder. This is achieved by utilizing a sophisticated method of deriving energy type estimates for weak solutions and global estimates for regular solutions—an approach that is wholly unique within the existing literature on the Navier-Stokes equations. To demonstrate these results, three main steps are followed: first, the existence of weak solutions is shown; next, the conditions guaranteeing the regularity of weak solutions are presented; and, lastly, global regular solutions are proven. This volume is ideal for mathematicians whose work involves the Navier-Stokes equations, and, more broadly, researchers studying fluid mechanics.
650
0
$a
Partial differential equations.
$3
1102982
650
0
$a
Fluids.
$3
671110
650
0
$a
Functional analysis.
$3
527706
650
1 4
$a
Partial Differential Equations.
$3
671119
650
2 4
$a
Fluid- and Aerodynamics.
$3
768779
650
2 4
$a
Functional Analysis.
$3
672166
700
1
$a
Zajączkowski, Wojciech M.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1309582
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030323295
776
0 8
$i
Printed edition:
$z
9783030323318
830
0
$a
Lecture Notes in Mathematical Fluid Mechanics,
$x
2510-1374
$3
1273683
856
4 0
$u
https://doi.org/10.1007/978-3-030-32330-1
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入