語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Survival Analysis with Correlated En...
~
Rondeau, Virginie.
Survival Analysis with Correlated Endpoints = Joint Frailty-Copula Models /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Survival Analysis with Correlated Endpoints/ by Takeshi Emura, Shigeyuki Matsui, Virginie Rondeau.
其他題名:
Joint Frailty-Copula Models /
作者:
Emura, Takeshi.
其他作者:
Matsui, Shigeyuki.
面頁冊數:
XVII, 118 p. 29 illus., 19 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Statistics . -
電子資源:
https://doi.org/10.1007/978-981-13-3516-7
ISBN:
9789811335167
Survival Analysis with Correlated Endpoints = Joint Frailty-Copula Models /
Emura, Takeshi.
Survival Analysis with Correlated Endpoints
Joint Frailty-Copula Models /[electronic resource] :by Takeshi Emura, Shigeyuki Matsui, Virginie Rondeau. - 1st ed. 2019. - XVII, 118 p. 29 illus., 19 illus. in color.online resource. - JSS Research Series in Statistics,2364-0057. - JSS Research Series in Statistics,.
Chapter 1: Setting the scene.-1.1 Endpoints -- 1.2 Benefits of investigating correlated endpoints -- 1.3 Copulas and frailty: a brief history -- References -- Chapter 2: Introduction to survival analysis .-2.1 Endpoint and censoring -- 2.2 Kaplan-Meier estimator and survival function -- 2.3 Hazard function -- 2.4 Log-rank test for two-sample comparison -- 2.5 Cox regression -- 2.6 Example of Cox regression -- 2.7 Likelihood inference under non-informative censoring -- 2.8 Theoretical notes -- 2.9 Exercises -- References -- Chapter 3: The joint frailty-copula model for correlated endpoints -- 3.1 Introduction -- 3.2 Semi-competing risks data -- 3.3 Joint frailty-copula model -- 3.4 Penalized likelihood with splines -- 3.5 Case study: ovarian cancer data -- 3.6 Technical note 1: Numerical maximization of the penalized likelihood -- 3.7 Technical note 2: LCV and choice of and -- 3.8 Exercises -- References -- Chapter 4: High-dimensional covariates in the joint frailty-copula model -- 4.1 Introduction -- 4.2 Tukey’s compound covariate -- 4.3 Univariate selection -- 4.4 Meta-analytic data with high-dimensional covariates -- 4.5 The joint model with compound covariates -- 4.6 The joint model with ridge or Lasso predictor -- 4.7 Prediction of patient-level survival function -- 4.8 Simulations -- 4.8.1 Simulation design -- 4.8.2 Simulation results -- 4.9 Case study: ovarian cancer data -- 4.9.1 Compound covariate -- 4.9.2 Fitting the joint frailty-copula mode -- 4.9.3 Patient-level survival function -- 4.10 Concluding remarks -- References -- Chapter 5: Dynamic prediction of time-to-death -- 5.1 Accurate prediction of survival -- 5.2 Framework of dynamic prediction -- 5.2.1 Conditional failure function given tumour progression -- 5.2.2 Conditional hazard function given tumour progression -- 5.3 Prediction formulas under the joint frailty-copula model -- 5.4 Estimating prediction formulas -- 5.5 Case study: ovarian cancer data -- 5.6 Discussions -- References -- Chapter 6: Future developments- 6.1 Analysis of recurrent events -- 6.2 Kendall’s tau in meta-analysis -- 6.3 Validation of surrogate endpoints -- 6.4 Left-truncation -- 6.5 Interactions -- 6.6 Parametric failure time models -- 6.7 Compound covariate -- References -- Appendix A: Cubic spline bases -- Appendix B: R codes for the ovarian cancer data analysis -- B1. Using CXCL12 gene as a covariate -- B2. Using compound covariates (CCs) and residual tumour as covariates -- Appendix C: Derivation of prediction formulas.
This book introduces readers to advanced statistical methods for analyzing survival data involving correlated endpoints. In particular, it describes statistical methods for applying Cox regression to two correlated endpoints by accounting for dependence between the endpoints with the aid of copulas. The practical advantages of employing copula-based models in medical research are explained on the basis of case studies. In addition, the book focuses on clustered survival data, especially data arising from meta-analysis and multicenter analysis. Consequently, the statistical approaches presented here employ a frailty term for heterogeneity modeling. This brings the joint frailty-copula model, which incorporates a frailty term and a copula, into a statistical model. The book also discusses advanced techniques for dealing with high-dimensional gene expressions and developing personalized dynamic prediction tools under the joint frailty-copula model. To help readers apply the statistical methods to real-world data, the book provides case studies using the authors’ original R software package (freely available in CRAN). The emphasis is on clinical survival data, involving time-to-tumor progression and overall survival, collected on cancer patients. Hence, the book offers an essential reference guide for medical statisticians and provides researchers with advanced, innovative statistical tools. The book also provides a concise introduction to basic multivariate survival models.
ISBN: 9789811335167
Standard No.: 10.1007/978-981-13-3516-7doiSubjects--Topical Terms:
1253516
Statistics .
LC Class. No.: QA276-280
Dewey Class. No.: 519.5
Survival Analysis with Correlated Endpoints = Joint Frailty-Copula Models /
LDR
:05465nam a22004095i 4500
001
1015667
003
DE-He213
005
20200630134506.0
007
cr nn 008mamaa
008
210106s2019 si | s |||| 0|eng d
020
$a
9789811335167
$9
978-981-13-3516-7
024
7
$a
10.1007/978-981-13-3516-7
$2
doi
035
$a
978-981-13-3516-7
050
4
$a
QA276-280
072
7
$a
PBT
$2
bicssc
072
7
$a
MED090000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
MBNS
$2
thema
082
0 4
$a
519.5
$2
23
100
1
$a
Emura, Takeshi.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1202727
245
1 0
$a
Survival Analysis with Correlated Endpoints
$h
[electronic resource] :
$b
Joint Frailty-Copula Models /
$c
by Takeshi Emura, Shigeyuki Matsui, Virginie Rondeau.
250
$a
1st ed. 2019.
264
1
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
XVII, 118 p. 29 illus., 19 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
JSS Research Series in Statistics,
$x
2364-0057
505
0
$a
Chapter 1: Setting the scene.-1.1 Endpoints -- 1.2 Benefits of investigating correlated endpoints -- 1.3 Copulas and frailty: a brief history -- References -- Chapter 2: Introduction to survival analysis .-2.1 Endpoint and censoring -- 2.2 Kaplan-Meier estimator and survival function -- 2.3 Hazard function -- 2.4 Log-rank test for two-sample comparison -- 2.5 Cox regression -- 2.6 Example of Cox regression -- 2.7 Likelihood inference under non-informative censoring -- 2.8 Theoretical notes -- 2.9 Exercises -- References -- Chapter 3: The joint frailty-copula model for correlated endpoints -- 3.1 Introduction -- 3.2 Semi-competing risks data -- 3.3 Joint frailty-copula model -- 3.4 Penalized likelihood with splines -- 3.5 Case study: ovarian cancer data -- 3.6 Technical note 1: Numerical maximization of the penalized likelihood -- 3.7 Technical note 2: LCV and choice of and -- 3.8 Exercises -- References -- Chapter 4: High-dimensional covariates in the joint frailty-copula model -- 4.1 Introduction -- 4.2 Tukey’s compound covariate -- 4.3 Univariate selection -- 4.4 Meta-analytic data with high-dimensional covariates -- 4.5 The joint model with compound covariates -- 4.6 The joint model with ridge or Lasso predictor -- 4.7 Prediction of patient-level survival function -- 4.8 Simulations -- 4.8.1 Simulation design -- 4.8.2 Simulation results -- 4.9 Case study: ovarian cancer data -- 4.9.1 Compound covariate -- 4.9.2 Fitting the joint frailty-copula mode -- 4.9.3 Patient-level survival function -- 4.10 Concluding remarks -- References -- Chapter 5: Dynamic prediction of time-to-death -- 5.1 Accurate prediction of survival -- 5.2 Framework of dynamic prediction -- 5.2.1 Conditional failure function given tumour progression -- 5.2.2 Conditional hazard function given tumour progression -- 5.3 Prediction formulas under the joint frailty-copula model -- 5.4 Estimating prediction formulas -- 5.5 Case study: ovarian cancer data -- 5.6 Discussions -- References -- Chapter 6: Future developments- 6.1 Analysis of recurrent events -- 6.2 Kendall’s tau in meta-analysis -- 6.3 Validation of surrogate endpoints -- 6.4 Left-truncation -- 6.5 Interactions -- 6.6 Parametric failure time models -- 6.7 Compound covariate -- References -- Appendix A: Cubic spline bases -- Appendix B: R codes for the ovarian cancer data analysis -- B1. Using CXCL12 gene as a covariate -- B2. Using compound covariates (CCs) and residual tumour as covariates -- Appendix C: Derivation of prediction formulas.
520
$a
This book introduces readers to advanced statistical methods for analyzing survival data involving correlated endpoints. In particular, it describes statistical methods for applying Cox regression to two correlated endpoints by accounting for dependence between the endpoints with the aid of copulas. The practical advantages of employing copula-based models in medical research are explained on the basis of case studies. In addition, the book focuses on clustered survival data, especially data arising from meta-analysis and multicenter analysis. Consequently, the statistical approaches presented here employ a frailty term for heterogeneity modeling. This brings the joint frailty-copula model, which incorporates a frailty term and a copula, into a statistical model. The book also discusses advanced techniques for dealing with high-dimensional gene expressions and developing personalized dynamic prediction tools under the joint frailty-copula model. To help readers apply the statistical methods to real-world data, the book provides case studies using the authors’ original R software package (freely available in CRAN). The emphasis is on clinical survival data, involving time-to-tumor progression and overall survival, collected on cancer patients. Hence, the book offers an essential reference guide for medical statisticians and provides researchers with advanced, innovative statistical tools. The book also provides a concise introduction to basic multivariate survival models.
650
0
$a
Statistics .
$3
1253516
650
1 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
670172
650
2 4
$a
Statistics for Social Sciences, Humanities, Law.
$3
1211304
650
2 4
$a
Statistical Theory and Methods.
$3
671396
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
782247
700
1
$a
Matsui, Shigeyuki.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1172364
700
1
$a
Rondeau, Virginie.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1309849
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9789811335150
776
0 8
$i
Printed edition:
$z
9789811335174
830
0
$a
JSS Research Series in Statistics,
$x
2364-0057
$3
1255493
856
4 0
$u
https://doi.org/10.1007/978-981-13-3516-7
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入