語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Text Mining = Concepts, Implementati...
~
Jo, Taeho.
Text Mining = Concepts, Implementation, and Big Data Challenge /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Text Mining/ by Taeho Jo.
其他題名:
Concepts, Implementation, and Big Data Challenge /
作者:
Jo, Taeho.
面頁冊數:
XIII, 373 p. 236 illus., 148 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Electrical engineering. -
電子資源:
https://doi.org/10.1007/978-3-319-91815-0
ISBN:
9783319918150
Text Mining = Concepts, Implementation, and Big Data Challenge /
Jo, Taeho.
Text Mining
Concepts, Implementation, and Big Data Challenge /[electronic resource] :by Taeho Jo. - 1st ed. 2019. - XIII, 373 p. 236 illus., 148 illus. in color.online resource. - Studies in Big Data,452197-6503 ;. - Studies in Big Data,8.
Part I: Foundation -- Introduction -- Text Indexing -- Text Encoding -- Text Association -- Part II: Text Categorization -- Text Categorization: Conceptual View -- Text Categorization: Approaches -- Text Categorization: Implementation -- Text Categorization: Evaluation -- Part III: Text Clustering -- Text Clustering: Conceptual View -- Text Clustering: Approaches -- Text Clustering: Implementation -- Text Clustering: Evaluation -- Part IV: Advanced Topics -- Text Summarization -- Text Segmentation -- Taxonomy Generation -- Dynamic Document Organization -- References -- Index.
This book discusses text mining and different ways this type of data mining can be used to find implicit knowledge from text collections. The author provides the guidelines for implementing text mining systems in Java, as well as concepts and approaches. The book starts by providing detailed text preprocessing techniques and then goes on to provide concepts, the techniques, the implementation, and the evaluation of text categorization. It then goes into more advanced topics including text summarization, text segmentation, topic mapping, and automatic text management. Presents techniques of preprocessing texts into structured forms; Outlines concepts of text categorization and clustering, their algorithms, and implementation guides; Includes advanced topics such as text summarization, text segmentation, topic mapping, and automatic text management.
ISBN: 9783319918150
Standard No.: 10.1007/978-3-319-91815-0doiSubjects--Topical Terms:
596380
Electrical engineering.
LC Class. No.: TK1-9971
Dewey Class. No.: 621.382
Text Mining = Concepts, Implementation, and Big Data Challenge /
LDR
:02833nam a22004095i 4500
001
1016343
003
DE-He213
005
20200701010223.0
007
cr nn 008mamaa
008
210106s2019 gw | s |||| 0|eng d
020
$a
9783319918150
$9
978-3-319-91815-0
024
7
$a
10.1007/978-3-319-91815-0
$2
doi
035
$a
978-3-319-91815-0
050
4
$a
TK1-9971
072
7
$a
TJK
$2
bicssc
072
7
$a
TEC041000
$2
bisacsh
072
7
$a
TJK
$2
thema
082
0 4
$a
621.382
$2
23
100
1
$a
Jo, Taeho.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1310732
245
1 0
$a
Text Mining
$h
[electronic resource] :
$b
Concepts, Implementation, and Big Data Challenge /
$c
by Taeho Jo.
250
$a
1st ed. 2019.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
XIII, 373 p. 236 illus., 148 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Studies in Big Data,
$x
2197-6503 ;
$v
45
505
0
$a
Part I: Foundation -- Introduction -- Text Indexing -- Text Encoding -- Text Association -- Part II: Text Categorization -- Text Categorization: Conceptual View -- Text Categorization: Approaches -- Text Categorization: Implementation -- Text Categorization: Evaluation -- Part III: Text Clustering -- Text Clustering: Conceptual View -- Text Clustering: Approaches -- Text Clustering: Implementation -- Text Clustering: Evaluation -- Part IV: Advanced Topics -- Text Summarization -- Text Segmentation -- Taxonomy Generation -- Dynamic Document Organization -- References -- Index.
520
$a
This book discusses text mining and different ways this type of data mining can be used to find implicit knowledge from text collections. The author provides the guidelines for implementing text mining systems in Java, as well as concepts and approaches. The book starts by providing detailed text preprocessing techniques and then goes on to provide concepts, the techniques, the implementation, and the evaluation of text categorization. It then goes into more advanced topics including text summarization, text segmentation, topic mapping, and automatic text management. Presents techniques of preprocessing texts into structured forms; Outlines concepts of text categorization and clustering, their algorithms, and implementation guides; Includes advanced topics such as text summarization, text segmentation, topic mapping, and automatic text management.
650
0
$a
Electrical engineering.
$3
596380
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Data mining.
$3
528622
650
0
$a
Information storage and retrieval.
$3
1069252
650
0
$a
Big data.
$3
981821
650
1 4
$a
Communications Engineering, Networks.
$3
669809
650
2 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Information Storage and Retrieval.
$3
593926
650
2 4
$a
Big Data/Analytics.
$3
1106909
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319918143
776
0 8
$i
Printed edition:
$z
9783319918167
776
0 8
$i
Printed edition:
$z
9783030063023
830
0
$a
Studies in Big Data,
$x
2197-6503 ;
$v
8
$3
1256918
856
4 0
$u
https://doi.org/10.1007/978-3-319-91815-0
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入