語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Analysis and Classification of EEG S...
~
Paszkiel, Szczepan.
Analysis and Classification of EEG Signals for Brain–Computer Interfaces
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Analysis and Classification of EEG Signals for Brain–Computer Interfaces/ by Szczepan Paszkiel.
作者:
Paszkiel, Szczepan.
面頁冊數:
VI, 132 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Artificial Intelligence. -
電子資源:
https://doi.org/10.1007/978-3-030-30581-9
ISBN:
9783030305819
Analysis and Classification of EEG Signals for Brain–Computer Interfaces
Paszkiel, Szczepan.
Analysis and Classification of EEG Signals for Brain–Computer Interfaces
[electronic resource] /by Szczepan Paszkiel. - 1st ed. 2020. - VI, 132 p.online resource. - Studies in Computational Intelligence,8521860-949X ;. - Studies in Computational Intelligence,564.
Chapter 1. Introduction -- Chapter 2. Data acquisition methods for human brain activity -- Chapter 3. Brain-computer interface (BCI) technology, etc.
This book addresses the problem of EEG signal analysis and the need to classify it for practical use in many sample implementations of brain–computer interfaces. In addition, it offers a wealth of information, ranging from the description of data acquisition methods in the field of human brain work, to the use of Moore–Penrose pseudo inversion to reconstruct the EEG signal and the LORETA method to locate sources of EEG signal generation for the needs of BCI technology. In turn, the book explores the use of neural networks for the classification of changes in the EEG signal based on facial expressions. Further topics touch on machine learning, deep learning, and neural networks. The book also includes dedicated implementation chapters on the use of brain–computer technology in the field of mobile robot control based on Python and the LabVIEW environment. In closing, it discusses the problem of the correlation between brain–computer technology and virtual reality technology.
ISBN: 9783030305819
Standard No.: 10.1007/978-3-030-30581-9doiSubjects--Topical Terms:
646849
Artificial Intelligence.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Analysis and Classification of EEG Signals for Brain–Computer Interfaces
LDR
:02587nam a22004095i 4500
001
1017747
003
DE-He213
005
20200701022721.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030305819
$9
978-3-030-30581-9
024
7
$a
10.1007/978-3-030-30581-9
$2
doi
035
$a
978-3-030-30581-9
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Paszkiel, Szczepan.
$e
editor.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1289010
245
1 0
$a
Analysis and Classification of EEG Signals for Brain–Computer Interfaces
$h
[electronic resource] /
$c
by Szczepan Paszkiel.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
VI, 132 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
852
505
0
$a
Chapter 1. Introduction -- Chapter 2. Data acquisition methods for human brain activity -- Chapter 3. Brain-computer interface (BCI) technology, etc.
520
$a
This book addresses the problem of EEG signal analysis and the need to classify it for practical use in many sample implementations of brain–computer interfaces. In addition, it offers a wealth of information, ranging from the description of data acquisition methods in the field of human brain work, to the use of Moore–Penrose pseudo inversion to reconstruct the EEG signal and the LORETA method to locate sources of EEG signal generation for the needs of BCI technology. In turn, the book explores the use of neural networks for the classification of changes in the EEG signal based on facial expressions. Further topics touch on machine learning, deep learning, and neural networks. The book also includes dedicated implementation chapters on the use of brain–computer technology in the field of mobile robot control based on Python and the LabVIEW environment. In closing, it discusses the problem of the correlation between brain–computer technology and virtual reality technology.
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Biomedical Engineering and Bioengineering.
$3
1211019
650
1 4
$a
Computational Intelligence.
$3
768837
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Neurobiology.
$3
573189
650
0
$a
Biomedical engineering.
$3
588770
650
0
$a
Computational intelligence.
$3
568984
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030305802
776
0 8
$i
Printed edition:
$z
9783030305826
776
0 8
$i
Printed edition:
$z
9783030305833
830
0
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
564
$3
1253640
856
4 0
$u
https://doi.org/10.1007/978-3-030-30581-9
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入