語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep Learning Classifiers with Memri...
~
SpringerLink (Online service)
Deep Learning Classifiers with Memristive Networks = Theory and Applications /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Deep Learning Classifiers with Memristive Networks/ edited by Alex Pappachen James.
其他題名:
Theory and Applications /
其他作者:
James, Alex Pappachen.
面頁冊數:
XIII, 213 p. 124 illus., 102 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Image Processing and Computer Vision. -
電子資源:
https://doi.org/10.1007/978-3-030-14524-8
ISBN:
9783030145248
Deep Learning Classifiers with Memristive Networks = Theory and Applications /
Deep Learning Classifiers with Memristive Networks
Theory and Applications /[electronic resource] :edited by Alex Pappachen James. - 1st ed. 2020. - XIII, 213 p. 124 illus., 102 illus. in color.online resource. - Modeling and Optimization in Science and Technologies,142196-7326 ;. - Modeling and Optimization in Science and Technologies,4.
This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.
ISBN: 9783030145248
Standard No.: 10.1007/978-3-030-14524-8doiSubjects--Topical Terms:
670819
Image Processing and Computer Vision.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Deep Learning Classifiers with Memristive Networks = Theory and Applications /
LDR
:02296nam a22003855i 4500
001
1018077
003
DE-He213
005
20200705173204.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030145248
$9
978-3-030-14524-8
024
7
$a
10.1007/978-3-030-14524-8
$2
doi
035
$a
978-3-030-14524-8
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
245
1 0
$a
Deep Learning Classifiers with Memristive Networks
$h
[electronic resource] :
$b
Theory and Applications /
$c
edited by Alex Pappachen James.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
XIII, 213 p. 124 illus., 102 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Modeling and Optimization in Science and Technologies,
$x
2196-7326 ;
$v
14
520
$a
This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.
650
2 4
$a
Image Processing and Computer Vision.
$3
670819
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Pattern Recognition.
$3
669796
650
1 4
$a
Computational Intelligence.
$3
768837
650
0
$a
Optical data processing.
$3
639187
650
0
$a
Data mining.
$3
528622
650
0
$a
Pattern recognition.
$3
1253525
650
0
$a
Computational intelligence.
$3
568984
700
1
$a
James, Alex Pappachen.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1289969
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030145224
776
0 8
$i
Printed edition:
$z
9783030145231
830
0
$a
Modeling and Optimization in Science and Technologies,
$x
2196-7326 ;
$v
4
$3
1258709
856
4 0
$u
https://doi.org/10.1007/978-3-030-14524-8
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入