語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
An Introduction to the Topological D...
~
SpringerLink (Online service)
An Introduction to the Topological Derivative Method
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
An Introduction to the Topological Derivative Method/ by Antonio André Novotny, Jan Sokołowski.
作者:
Novotny, Antonio André.
其他作者:
Sokołowski, Jan.
面頁冊數:
X, 114 p. 24 illus., 6 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Classical Mechanics. -
電子資源:
https://doi.org/10.1007/978-3-030-36915-6
ISBN:
9783030369156
An Introduction to the Topological Derivative Method
Novotny, Antonio André.
An Introduction to the Topological Derivative Method
[electronic resource] /by Antonio André Novotny, Jan Sokołowski. - 1st ed. 2020. - X, 114 p. 24 illus., 6 illus. in color.online resource. - SpringerBriefs in Mathematics,2191-8198. - SpringerBriefs in Mathematics,.
Introduction -- Singular Domain Perturbation -- Regular Domain Perturbation -- Domain Truncation Method -- Topology Design Optimization -- Appendix: Tensor Calculus -- References -- Index.
This book presents the topological derivative method through selected examples, using a direct approach based on calculus of variations combined with compound asymptotic analysis. This new concept in shape optimization has applications in many different fields such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena. In particular, the topological derivative is used here in numerical methods of shape optimization, with applications in the context of compliance structural topology optimization and topology design of compliant mechanisms. Some exercises are offered at the end of each chapter, helping the reader to better understand the involved concepts.
ISBN: 9783030369156
Standard No.: 10.1007/978-3-030-36915-6doiSubjects--Topical Terms:
1140387
Classical Mechanics.
LC Class. No.: QA315-316
Dewey Class. No.: 515.64
An Introduction to the Topological Derivative Method
LDR
:02408nam a22004215i 4500
001
1018792
003
DE-He213
005
20200630211334.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030369156
$9
978-3-030-36915-6
024
7
$a
10.1007/978-3-030-36915-6
$2
doi
035
$a
978-3-030-36915-6
050
4
$a
QA315-316
050
4
$a
QA402.3
072
7
$a
PBKQ
$2
bicssc
072
7
$a
MAT005000
$2
bisacsh
072
7
$a
PBKQ
$2
thema
072
7
$a
PBU
$2
thema
082
0 4
$a
515.64
$2
23
100
1
$a
Novotny, Antonio André.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1307248
245
1 3
$a
An Introduction to the Topological Derivative Method
$h
[electronic resource] /
$c
by Antonio André Novotny, Jan Sokołowski.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
X, 114 p. 24 illus., 6 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Mathematics,
$x
2191-8198
505
0
$a
Introduction -- Singular Domain Perturbation -- Regular Domain Perturbation -- Domain Truncation Method -- Topology Design Optimization -- Appendix: Tensor Calculus -- References -- Index.
520
$a
This book presents the topological derivative method through selected examples, using a direct approach based on calculus of variations combined with compound asymptotic analysis. This new concept in shape optimization has applications in many different fields such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena. In particular, the topological derivative is used here in numerical methods of shape optimization, with applications in the context of compliance structural topology optimization and topology design of compliant mechanisms. Some exercises are offered at the end of each chapter, helping the reader to better understand the involved concepts.
650
2 4
$a
Classical Mechanics.
$3
1140387
650
2 4
$a
Partial Differential Equations.
$3
671119
650
1 4
$a
Calculus of Variations and Optimal Control; Optimization.
$3
593942
650
0
$a
Mechanics.
$3
527684
650
0
$a
Partial differential equations.
$3
1102982
650
0
$a
Calculus of variations.
$3
527927
700
1
$a
Sokołowski, Jan.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
883726
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030369149
776
0 8
$i
Printed edition:
$z
9783030369163
830
0
$a
SpringerBriefs in Mathematics,
$x
2191-8198
$3
1255329
856
4 0
$u
https://doi.org/10.1007/978-3-030-36915-6
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入